Kinetic Theory by David Tong

Small book cover: Kinetic Theory

Kinetic Theory

Publisher: University of Cambridge
Number of pages: 106

This is a graduate course on topics in non-equilibrium statistical mechanics, covering kinetic theory, stochastic processes and linear response. It is aimed at masters students and PhD students. The full set of lecture notes are around 100 pages.

Home page url

Download or read it online for free here:
Download link
(670KB, PDF)

Similar books

Book cover: Lecture Notes on Thermodynamics and Statistical MechanicsLecture Notes on Thermodynamics and Statistical Mechanics
by - University of California, San Diego
Contents: Probability 2. Thermodynamics 3. Ergodicity and the Approach to Equilibrium 4. Statistical Ensembles 5. Noninteracting Quantum Systems 6. Classical Interacting Systems 7. Mean Field Theory of Phase Transitions 8. Nonequilibrium Phenomena.
Book cover: Homogeneous Boltzmann Equation in Quantum Relativistic Kinetic TheoryHomogeneous Boltzmann Equation in Quantum Relativistic Kinetic Theory
by - American Mathematical Society
We consider some mathematical questions about Boltzmann equations for quantum particles, relativistic or non relativistic. Relevant cases such as Bose, Bose-Fermi, and photon-electron gases are studied. We also consider some simplifications ...
Book cover: Fluctuation-Dissipation: Response Theory in Statistical PhysicsFluctuation-Dissipation: Response Theory in Statistical Physics
by - arXiv
General aspects of the Fluctuation-Dissipation Relation (FDR), and Response Theory are considered. We illustrate the relation between the relaxation of spontaneous fluctuations, and the response to an external perturbation.
Book cover: A Basic Introduction to Large Deviations: Theory, Applications, SimulationsA Basic Introduction to Large Deviations: Theory, Applications, Simulations
by - arXiv
The theory of large deviations deals with the probabilities of rare events that are exponentially small as a function of some parameter, e.g., the number of random components of a system or the time over which a stochastic system is observed.