Quantum Spin Systems on Infinite Lattices

Small book cover: Quantum Spin Systems on Infinite Lattices

Quantum Spin Systems on Infinite Lattices

Publisher: arXiv
Number of pages: 90

These are the lecture notes for a one semester course at Leibniz University Hannover. The main aim of the course is to give an introduction to the mathematical methods used in describing discrete quantum systems consisting of infinitely many sites. Such systems can be used, for example, to model some materials in condensed matter physics or lattice gases.

Home page url

Download or read it online for free here:
Download link
(890KB, PDF)

Similar books

Book cover: Clifford Algebra, Geometric Algebra, and ApplicationsClifford Algebra, Geometric Algebra, and Applications
by - arXiv
These are lecture notes for a course on the theory of Clifford algebras. The various applications include vector space and projective geometry, orthogonal maps and spinors, normed division algebras, as well as simplicial complexes and graph theory.
Book cover: Feynman Diagrams and Differential EquationsFeynman Diagrams and Differential Equations
by - arXiv
The authors review the method of differential equations for the evaluation of D-dimensionally regulated Feynman integrals. After dealing with the technique, we discuss its application in the context of corrections to the photon propagator in QED.
Book cover: Lectures on Integrable Hamiltonian SystemsLectures on Integrable Hamiltonian Systems
by - arXiv
We consider integrable Hamiltonian systems in a general setting of invariant submanifolds which need not be compact. This is the case a global Kepler system, non-autonomous integrable Hamiltonian systems and systems with time-dependent parameters.
Book cover: LieART: A Mathematica Application for Lie Algebras and Representation TheoryLieART: A Mathematica Application for Lie Algebras and Representation Theory
by - arXiv
We present the Mathematica application LieART (Lie Algebras and Representation Theory) for computations in Lie Algebras and representation theory, such as tensor product decomposition and subalgebra branching of irreducible representations.