Bernoulli Polynomials and Applications

Small book cover: Bernoulli Polynomials and Applications

Bernoulli Polynomials and Applications

Publisher: arXiv
Number of pages: 48

In this lecture notes we try to familiarize the audience with the theory of Bernoulli polynomials; we study their properties, and we give, with proofs and references, some of the most relevant results related to them. Several applications to these polynomials are presented, including a unified approach to the asymptotic expansion of the error term in many numerical quadrature formulae, and many new and sharp inequalities, that bound some trigonometric sums.

Home page url

Download or read it online for free here:
Download link
(490KB, PDF)

Similar books

Book cover: Lectures on Topics in AnalysisLectures on Topics in Analysis
by - Tata Institute of Fundamental Research
Topics covered: Differentiable functions in Rn; Manifolds; Vector bundles; Linear differential operators; Cauchy Kovalevski Theorem; Fourier transforms, Plancherel's theorem; Sobolev spaces Hm,p; Elliptic differential operators; etc.
Book cover: Calculus and Differential EquationsCalculus and Differential Equations
by - Learning Development Institute
The book places emphasis on Mathematics as a human activity and on the people who made it. From the table of contents: Historical background; Differential calculus; Integral calculus; Differential equations; Solutions to the problems.
Book cover: Elementary Mathematical AnalysisElementary Mathematical Analysis
by - The Macmillan Company
The book presents a course suitable for students in the first year of our colleges, universities, and technical schools. It presupposes on the part of the student only the usual minimum entrance requirements in elementary algebra and plane geometry.
Book cover: Special Functions and Their Symmetries: Postgraduate Course in Applied AnalysisSpecial Functions and Their Symmetries: Postgraduate Course in Applied Analysis
by - University of Leeds
This text presents fundamentals of special functions theory and its applications in partial differential equations of mathematical physics. The course covers topics in harmonic, classical and functional analysis, and combinatorics.