**Bernoulli Polynomials and Applications**

by Omran Kouba

**Publisher**: arXiv 2013**Number of pages**: 48

**Description**:

In this lecture notes we try to familiarize the audience with the theory of Bernoulli polynomials; we study their properties, and we give, with proofs and references, some of the most relevant results related to them. Several applications to these polynomials are presented, including a unified approach to the asymptotic expansion of the error term in many numerical quadrature formulae, and many new and sharp inequalities, that bound some trigonometric sums.

Download or read it online for free here:

**Download link**

(490KB, PDF)

## Similar books

**Special Functions, a Review**

by

**S. Arfaoui, I. Rezgui, A.B. Mabrouk**-

**viXra**

The present document is concerned with the review of the most frequently special functions applied in scientific fields. We review their principal properties and their interactions with different branches especially in mathematics ...

(

**3357**views)

**Lectures on Topics in Analysis**

by

**Raghavan Narasimhan**-

**Tata Institute of Fundamental Research**

Topics covered: Differentiable functions in Rn; Manifolds; Vector bundles; Linear differential operators; Cauchy Kovalevski Theorem; Fourier transforms, Plancherel's theorem; Sobolev spaces Hm,p; Elliptic differential operators; etc.

(

**6441**views)

**Lectures on Disintegration of Measures**

by

**L. Schwartz**-

**Tata Institute of Fundamental Research**

These Notes cover I) disintegration of a measure with respect to a single sigma-algebra, and in part II, measure valued supermartingales and regular disintegration of a measure with respect to an increasing right continuous family of sigma-algebras.

(

**5230**views)

**Discrete Oscillation Theory**

by

**Ravi P. Agarwal, at al.**-

**Hindawi Publishing Corporation**

This book is devoted to a rapidly developing branch of the qualitative theory of difference equations with or without delays. It presents the theory of oscillation of difference equations, exhibiting classical as well as recent results in that area.

(

**8042**views)