Logo

Linear Algebra: Foundations to Frontiers

Small book cover: Linear Algebra: Foundations to Frontiers

Linear Algebra: Foundations to Frontiers
by

Publisher: ulaff.net
Number of pages: 905

Description:
This document is a resource that integrates a text, a large number of videos (more than 270 by last count), and hands-on activities. It connects hand calculations, mathematical abstractions, and computer programming. It encourages you to develop the mathematical theory of linear algebra by posing questions rather than outright stating theorems and their proofs. It introduces you to the frontier of linear algebra software development.

Home page url

Download or read it online for free here:
Download link
(33MB, PDF)

Similar books

Book cover: Basic Linear AlgebraBasic Linear Algebra
by - University of Glasgow
The text covers basic ideas and techniques of Linear Algebra that are applicable in many subjects including the physical and chemical sciences, and statistics. These notes were originally written for a course at the University of Glasgow.
(16499 views)
Book cover: Linear AlgebraLinear Algebra
by - Saint Michael's College
This is an undergraduate linear algebra textbook, it covers linear systems, Gauss' method, vector spaces, linear maps and matrices, determinants, and eigenvectors and eigenvalues. Each chapter is followed by additional topics and applications.
(59494 views)
Book cover: Elements of Abstract and Linear AlgebraElements of Abstract and Linear Algebra
by
Covers abstract algebra in general, with the focus on linear algebra, intended for students in mathematics, physical sciences, and computer science. The presentation is compact, but still somewhat informal. The proofs of many theorems are omitted.
(17668 views)
Book cover: Linear Algebra: An Introduction to Mathematical DiscourseLinear Algebra: An Introduction to Mathematical Discourse
- Wikibooks
The book was designed specifically for students who had not previously been exposed to mathematics as mathematicians view it. That is, as a subject whose goal is to rigorously prove theorems starting from clear consistent definitions.
(12725 views)