**Topics in the Theory of Quadratic Residues**

by Steve Wright

**Publisher**: arXiv 2014**Number of pages**: 160

**Description**:

Beginning with the fundamental contributions of Gauss, the study of quadratic residues and nonresidues has subsequently led directly to many of the key ideas and techniques that are used everywhere in number theory today, and the primary goal of these lectures is to use this study as a window through which to view the development of some of those ideas and techniques.

Download or read it online for free here:

**Download link**

(960KB, PDF)

## Similar books

**An Introduction to the Smarandache Function**

by

**Charles Ashbacher**-

**Erhus Univ Pr**

In the 1970's a Rumanian mathematician Florentin Smarandache created a new function in number theory, which consequences encompass many areas of mathematics.The purpose of this text is to examine some of those consequences.

(

**6721**views)

**Introduction to Shimura Varieties**

by

**J.S. Milne**

This is an introduction to the theory of Shimura varieties, or, in other words, to the arithmetic theory of automorphic functions and holomorphic automorphic forms. Because of their brevity, many proofs have been omitted or only sketched.

(

**4188**views)

**Harmonic Analysis, the Trace Formula, and Shimura Varieties**

by

**J. Arthur, D. Ellwood, R. Kottwitz**-

**American Mathematical Society**

The goal of this volume is to provide an entry point into the challenging field of the modern theory of automorphic forms. It is directed on the one hand at graduate students and professional mathematicians who would like to work in the area.

(

**6580**views)

**Elliptic Curves over Function Fields**

by

**Douglas Ulmer**-

**arXiv**

The focus is on elliptic curves over function fields over finite fields. We explain the main classical results on the Birch and Swinnerton-Dyer conjecture in this context and its connection to the Tate conjecture about divisors on surfaces.

(

**6364**views)