Logo

Arithmetic Duality Theorems

Large book cover: Arithmetic Duality Theorems

Arithmetic Duality Theorems
by

Publisher: BookSurge Publishing
ISBN/ASIN: 141964274X
ISBN-13: 9781419642746
Number of pages: 347

Description:
The book deals with duality theorems in Galois, étale and flat cohomology, for local and global fields, as well as the corresponding rings of integers. Also covered are results about cohomological dimension, finiteness and Euler-Poincaré characteristics. It can serve as a good general reference for these questions.

Home page url

Download or read it online for free here:
Download link
(2MB, PDF)

Similar books

Book cover: Lectures On Irregularities Of DistributionLectures On Irregularities Of Distribution
by - Tata Institute of Fundamental Research
The theory of Irregularities of Distribution began as a branch of Uniform Distributions, but is of independent interest. In these lectures the author restricted himself to distribution problems with a geometric interpretation.
(4743 views)
Book cover: Geometry of Numbers with Applications to Number TheoryGeometry of Numbers with Applications to Number Theory
by - University of Georgia
The goal is to find and explore open questions in both geometry of numbers -- e.g. Lattice Point Enumerators, the Ehrhart-Polynomial, Minkowski's Convex Body Theorems, Minkowski-Hlawka Theorem, ... -- and its applications to number theory.
(5030 views)
Book cover: Geometric Theorems and Arithmetic FunctionsGeometric Theorems and Arithmetic Functions
by - American Research Press
Contents: on Smarandache's Podaire theorem, Diophantine equation, the least common multiple of the first positive integers, limits related to prime numbers, a generalized bisector theorem, values of arithmetical functions and factorials, and more.
(12223 views)
Book cover: Predicative ArithmeticPredicative Arithmetic
by - Princeton Univ Pr
The book based on lecture notes of a course given at Princeton University in 1980. From the contents: the impredicativity of induction, the axioms of arithmetic, order, induction by relativization, the bounded least number principle, and more.
(12273 views)