Logo

Arithmetic Duality Theorems

Large book cover: Arithmetic Duality Theorems

Arithmetic Duality Theorems
by

Publisher: BookSurge Publishing
ISBN/ASIN: 141964274X
ISBN-13: 9781419642746
Number of pages: 347

Description:
The book deals with duality theorems in Galois, étale and flat cohomology, for local and global fields, as well as the corresponding rings of integers. Also covered are results about cohomological dimension, finiteness and Euler-Poincaré characteristics. It can serve as a good general reference for these questions.

Home page url

Download or read it online for free here:
Download link
(2MB, PDF)

Similar books

Book cover: An Introduction to the Smarandache FunctionAn Introduction to the Smarandache Function
by - Erhus Univ Pr
In the 1970's a Rumanian mathematician Florentin Smarandache created a new function in number theory, which consequences encompass many areas of mathematics.The purpose of this text is to examine some of those consequences.
(8480 views)
Book cover: Modular Forms, Hecke Operators, and Modular Abelian VarietiesModular Forms, Hecke Operators, and Modular Abelian Varieties
by - University of Washington
Contents: The Main objects; Modular representations and algebraic curves; Modular Forms of Level 1; Analytic theory of modular curves; Modular Symbols; Modular Forms of Higher Level; Newforms and Euler Products; Hecke operators as correspondences...
(5843 views)
Book cover: Introduction to Shimura VarietiesIntroduction to Shimura Varieties
by
This is an introduction to the theory of Shimura varieties, or, in other words, to the arithmetic theory of automorphic functions and holomorphic automorphic forms. Because of their brevity, many proofs have been omitted or only sketched.
(5385 views)
Book cover: Lectures on Shimura VarietiesLectures on Shimura Varieties
by
The goal of these lectures is to explain the representability of moduli space abelian varieties with polarization, endomorphism and level structure, due to Mumford and the description of the set of its points over a finite field, due to Kottwitz.
(5634 views)