Logo

Combinatory Analysis by Percy A. MacMahon

Large book cover: Combinatory Analysis

Combinatory Analysis
by

Publisher: Cambridge University Press
ISBN/ASIN: 0821828320
Number of pages: 612

Description:
The object of this work is, in the main, to present to mathematicians an account of theorems in combinatory analysis which are of a perfectly general character, and to shew the connexion between them by as far as possible bringing them together as parts of a general doctrine. It may appeal also to others whose reading has not been very extensive.

Home page url

Download or read it online for free here:
Download link 1
Download link 2

(multiple formats)

Similar books

Book cover: Combinatorial Maps: TutorialCombinatorial Maps: Tutorial
by - Latvian University
Contents: Permutations; Combinatorial maps; The correspondence between combinatorial maps and graphs on surfaces; Map's mirror reflection and dual map; Multiplication of combinatorial maps; Normalized combinatorial maps; Geometrical interpretation...
(2784 views)
Book cover: Combinatorics Through Guided DiscoveryCombinatorics Through Guided Discovery
by - Dartmouth College
This is an introduction to combinatorial mathematics, also known as combinatorics. The book focuses especially but not exclusively on the part of combinatorics that mathematicians refer to as 'counting'. The book consists almost entirely of problems.
(5083 views)
Book cover: Enumerative Combinatorics: Volume 1Enumerative Combinatorics: Volume 1
by - MIT
The standard guide to the topic for students and experts alike. The material in Volume 1 was chosen to cover those parts of enumerative combinatorics of greatest applicability and with the most important connections with other areas of mathematics.
(2097 views)
Book cover: Applied CombinatoricsApplied Combinatorics
by - University of Colorado
These notes deal with enumerative combinatorics. The author included some traditional material and some truly nontrivial material, albeit with a treatment that makes it accessible to the student. He derives a variety of techniques for counting.
(10922 views)