An Introduction to Hilbert Module Approach to Multivariable Operator Theory
by Jaydeb Sarkar
Publisher: arXiv 2013
Number of pages: 52
Description:
This article gives an introduction of Hilbert modules over function algebras and surveys some recent developments. Here the theory of Hilbert modules is presented as combination of commutative algebra, complex geometry and the geometry of Hilbert spaces and its applications to the theory of n-tuples of commuting operators.
Download or read it online for free here:
Download link
(480KB, PDF)
Similar books

by Ola Bratteli, Derek W. Robinson - Springer
These two volumes present the theory of operator algebras with applications to quantum statistical mechanics. The authors' approach to the operator theory is to a large extent governed by the dictates of the physical applications.
(15018 views)

by T.B. Ward - University of East Anglia
Lecture notes for a 3rd year undergraduate course in functional analysis. By the end of the course, you should have a good understanding of normed vector spaces, Hilbert and Banach spaces, fixed point theorems and examples of function spaces.
(8747 views)

by Ivan F. Wilde - King's College, London
These notes are based on lectures given as part of a mathematics MSc program. The approach here is to discuss topological vector spaces - with normed spaces considered as special cases. Contents: Topological Spaces; Nets; Product Spaces; etc.
(7327 views)

by John Erdos - King's College London
These are notes for a King's College course to fourth year undergraduates and MSc students. They cover the theoretical development of operators on Hilbert space up to the spectral theorem for bounded selfadjoint operators.
(6969 views)