Logo

Hilbert Space Methods for Partial Differential Equations

Large book cover: Hilbert Space Methods for Partial Differential Equations

Hilbert Space Methods for Partial Differential Equations
by

Publisher: Pitman
ISBN/ASIN: 0273084402
ISBN-13: 9780273084402
Number of pages: 208

Description:
The text for beginning graduate students of mathematics, engineering, and the physical sciences. The book covers elements of Hilbert space, distributions and Sobolev spaces, boundary value problems, first order evolution equations, implicit evolution equations, second order evolution equations, optimization and approximation topics.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Nonlinear Functional AnalysisNonlinear Functional Analysis
by - University of Vienna
This manuscript provides a brief introduction to nonlinear functional analysis. As an application we consider partial differential equations and prove existence and uniqueness for solutions of the stationary Navier-Stokes equation.
(13425 views)
Book cover: Linear Functional AnalysisLinear Functional Analysis
by - Macquarie University
An introduction to the basic ideas in linear functional analysis: metric spaces; connectedness, completeness and compactness; normed vector spaces; inner product spaces; orthogonal expansions; linear functionals; linear transformations; etc.
(14826 views)
Book cover: Functional Analysis with ApplicationsFunctional Analysis with Applications
by - arXiv
This book at the beginning graduate level will help students with primary interests elsewhere to acquire a facility with tools of a functional analytic flavor, say in harmonic analysis, numerical analysis, stochastic processes, or in physics.
(9775 views)
Book cover: Operators on Hilbert SpaceOperators on Hilbert Space
by - King's College London
These are notes for a King's College course to fourth year undergraduates and MSc students. They cover the theoretical development of operators on Hilbert space up to the spectral theorem for bounded selfadjoint operators.
(8514 views)