Logo

Hilbert Space Methods for Partial Differential Equations

Large book cover: Hilbert Space Methods for Partial Differential Equations

Hilbert Space Methods for Partial Differential Equations
by

Publisher: Pitman
ISBN/ASIN: 0273084402
ISBN-13: 9780273084402
Number of pages: 208

Description:
The text for beginning graduate students of mathematics, engineering, and the physical sciences. The book covers elements of Hilbert space, distributions and Sobolev spaces, boundary value problems, first order evolution equations, implicit evolution equations, second order evolution equations, optimization and approximation topics.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Operator Algebras and Quantum Statistical MechanicsOperator Algebras and Quantum Statistical Mechanics
by - Springer
These two volumes present the theory of operator algebras with applications to quantum statistical mechanics. The authors' approach to the operator theory is to a large extent governed by the dictates of the physical applications.
(12549 views)
Book cover: Functional Analysis Lecture NotesFunctional Analysis Lecture Notes
by - University of East Anglia
Lecture notes for a 3rd year undergraduate course in functional analysis. By the end of the course, you should have a good understanding of normed vector spaces, Hilbert and Banach spaces, fixed point theorems and examples of function spaces.
(6425 views)
Book cover: Functors and Categories of Banach SpacesFunctors and Categories of Banach Spaces
by - Springer
The aim of this book is to develop the theory of Banach operator ideals and metric tensor products along categorical lines: these two classes of mathematical objects are endofunctors on the category Ban of all Banach spaces in a natural way.
(5490 views)
Book cover: Notes on Operator AlgebrasNotes on Operator Algebras
by - Los Alamos National Laboratory
Lecture notes on operator algebras. From the table of contents: Structure Theory I; von Neumann Algebras; States and Representations; Structure Theory II; Matrices; Automorphism Groups; Extensions; K-Theory; Nuclear C* Algebras.
(6425 views)