**A First Course in Linear Algebra**

by Robert A. Beezer

**Publisher**: University of Puget Sound 2010**ISBN/ASIN**: B00262XN6S**Number of pages**: 1035

**Description**:

A First Course in Linear Algebra is an introductory textbook aimed at college-level sophomores and juniors. Typically such a student will have taken calculus, but this is not a prerequisite. The book begins with systems of linear equations, then covers matrix algebra, before taking up finite-dimensional vector spaces in full generality. The final chapter covers matrix representations of linear transformations, through diagonalization, change of basis and Jordan canonical form. Along the way, determinants and eigenvalues get fair time.

Download or read it online for free here:

**Download link**

(7.6MB, PDF)

## Similar books

**A First Course in Linear Algebra: Study Guide for the Undergraduate Linear Algebra Course**

by

**Mohammed Kaabar**-

**Arxiv.org**

There are five chapters: Systems of Linear Equations, Vector Spaces, Homogeneous Systems, Characteristic Equation of Matrix, and Matrix Dot Product. It has also exercises at the end of each chapter above to let students practice additional problems.

(

**6092**views)

**Elements of Abstract and Linear Algebra**

by

**Edwin H. Connell**

Covers abstract algebra in general, with the focus on linear algebra, intended for students in mathematics, physical sciences, and computer science. The presentation is compact, but still somewhat informal. The proofs of many theorems are omitted.

(

**16407**views)

**Computational and Algorithmic Linear Algebra and n-Dimensional Geometry**

by

**Katta G. Murty**

A sophomore level book on linear algebra and n-dimensional geometry with the aim of developing in college entering undergraduates skills in algorithms, computational methods, and mathematical modeling. Written in a simple style with lots of examples.

(

**14204**views)

**Linear Algebra**

by

**Paul Dawkins**-

**Lamar University**

These topics are covered: Systems of Equations and Matrices; Determinants; Euclidean n-space; Vector Spaces; Eigenvalues and Eigenvectors. These notes do assume that the reader has a good working knowledge of basic Algebra.

(

**16117**views)