Logo

Introduction to Mathematical Analysis

Small book cover: Introduction to Mathematical Analysis

Introduction to Mathematical Analysis
by

Publisher: Portland State University Library
ISBN-13: 9781312742840
Number of pages: 141

Description:
Our goal in this set of lecture notes is to provide students with a strong foundation in mathematical analysis. Such a foundation is crucial for future study of deeper topics of analysis. Students should be familiar with most of the concepts presented here after completing the calculus sequence. However, these concepts will be reinforced through rigorous proofs.

Home page url

Download or read it online for free here:
Download link
(1.3MB, PDF)

Similar books

Book cover: Mathematical Analysis IMathematical Analysis I
by - The Trillia Group
Topics include metric spaces, convergent sequences, open and closed sets, function limits and continuity, sequences and series of functions, compact sets, power series, Taylor's theorem, differentiation and integration, total variation, and more.
(11938 views)
Book cover: Real Analysis for Graduate Students: Measure and Integration TheoryReal Analysis for Graduate Students: Measure and Integration Theory
by - CreateSpace
Nearly every Ph.D. student in mathematics needs to take a preliminary or qualifying examination in real analysis. This book provides the necessary tools to pass such an examination. The author presents the material in as clear a fashion as possible.
(9314 views)
Book cover: Interactive Real AnalysisInteractive Real Analysis
by - Seton Hall University
Interactive Real Analysis is an online, interactive textbook for Real Analysis or Advanced Calculus in one real variable. It deals with sets, sequences, series, continuity, differentiability, integrability, topology, power series, and more.
(12853 views)
Book cover: Introduction to Real AnalysisIntroduction to Real Analysis
by - University of Louisville
From the table of contents: Basic Ideas (Sets, Functions and Relations, Cardinality); The Real Numbers; Sequences; Series; The Topology of R; Limits of Functions; Differentiation; Integration; Sequences of Functions; Fourier Series.
(4093 views)