**An Introduction to Real Analysis**

by John K. Hunter

**Publisher**: University of California Davis 2014**Number of pages**: 305

**Description**:

These are some notes on introductory real analysis. They cover the properties of the real numbers, sequences and series of real numbers, limits of functions, continuity, differentiability, sequences and series of functions, and Riemann integration.

Download or read it online for free here:

**Download link**

(2.5MB, PDF)

## Similar books

**The Foundations of Analysis**

by

**Larry Clifton**-

**arXiv**

This is a detailed introduction to the real number system from a categorical perspective. We begin with the categorical definition of the natural numbers, review the Eudoxus theory of ratios, and then define the positive real numbers categorically.

(

**5074**views)

**Applied Analysis**

by

**J. Hunter, B. Nachtergaele**-

**World Scientific Publishing Company**

Introduces applied analysis at the graduate level, particularly those parts of analysis useful in graduate applications. Only a background in basic calculus, linear algebra and ordinary differential equations, and functions and sets is required.

(

**11097**views)

**Theory of Functions of a Real Variable**

by

**Shlomo Sternberg**

The topology of metric spaces, Hilbert spaces and compact operators, the Fourier transform, measure theory, the Lebesgue integral, the Daniell integral, Wiener measure, Brownian motion and white noise, Haar measure, Banach algebras, etc.

(

**30736**views)

**How We Got From There to Here: A Story of Real Analysis**

by

**Robert Rogers, Eugene Boman**-

**Open SUNY Textbooks**

This book covers the major topics typically addressed in an introductory undergraduate course in real analysis in their historical order. The book provides guidance for transforming an intuitive understanding into rigorous mathematical arguments.

(

**3834**views)