Logo

An Introduction to Lie Group Integrators

Small book cover: An Introduction to Lie Group Integrators

An Introduction to Lie Group Integrators
by

Publisher: arXiv
Number of pages: 28

Description:
We give a short and elementary introduction to Lie group methods. A selection of applications of Lie group integrators are discussed. Finally, a family of symplectic integrators on cotangent bundles of Lie groups is presented and the notion of discrete gradient methods is generalised to Lie groups.

Home page url

Download or read it online for free here:
Download link
(2.3MB, PDF)

Similar books

Book cover: Lie groups and Lie algebrasLie groups and Lie algebras
by - UC Berkeley
From the table of contents: Tangent Lie algebras to Lie groups; Simply Connected Lie Groups; Hopf Algebras; PBW Theorem and Deformations; Lie algebra cohomology; Engel's Theorem and Lie's Theorem; Cartan Criterion, Whitehead and Weyl Theorems; etc.
(6613 views)
Book cover: Introductory Treatise On Lie's Theory Of Finite Continuous Transformation GroupsIntroductory Treatise On Lie's Theory Of Finite Continuous Transformation Groups
by - Oxford Clarendon Press
In this treatise an attempt is made to give, in as elementary a form as possible, the main outlines of Lie's theory of Continuous Groups. Even those familiar with the theory may find something new in the form in which the theory is here presented.
(2618 views)
Book cover: An Elementary Introduction to Groups and RepresentationsAn Elementary Introduction to Groups and Representations
by - arXiv
An elementary introduction to Lie groups, Lie algebras, and their representations. Topics include definitions and examples of Lie groups and Lie algebras, the basics of representations theory, the Baker-Campbell-Hausdorff formula, and more.
(12404 views)
Book cover: Lecture Notes in Lie GroupsLecture Notes in Lie Groups
by - arXiv
These notes are designed for a 1-semester third year or graduate course in mathematics, physics, or biology. We give both physical and medical examples of Lie groups. The only necessary background are advanced calculus and linear algebra.
(5019 views)