Logo

Introduction to Lie Groups and Lie Algebras

Large book cover: Introduction to Lie Groups and Lie Algebras

Introduction to Lie Groups and Lie Algebras
by

Publisher: SUNY at Stony Brook
ISBN/ASIN: 0521889693
Number of pages: 136

Description:
The book covers the basic theory of Lie groups and Lie algebras. This classic graduate text focuses on the study of semisimple Lie algebras, developing the necessary theory along the way. The material covered ranges from basic definitions of Lie groups to the classification of finite-dimensional representations of semisimple Lie algebras.

Home page url

Download or read it online for free here:
Download link
(1MB, PDF)

Similar books

Book cover: Why are Braids Orderable?Why are Braids Orderable?
by
This book is an account of several quite different approaches to Artin's braid groups, involving self-distributive algebra, uniform finite trees, combinatorial group theory, mapping class groups, laminations, and hyperbolic geometry.
(10330 views)
Book cover: Lectures on Topics In The Theory of Infinite GroupsLectures on Topics In The Theory of Infinite Groups
by - Tata Institute of Fundamental Research
As the title suggests, the aim was not a systematic treatment of infinite groups. Instead the author tried to present some of the methods and results that are new and look promising, and that have not yet found their way into the books.
(7949 views)
Book cover: An Introduction to Group Theory: Applications to Mathematical Music TheoryAn Introduction to Group Theory: Applications to Mathematical Music Theory
by - BookBoon
In this text, a modern presentation of the fundamental notions of Group Theory is chosen, where the language of commutative diagrams and universal properties, so necessary in Modern Mathematics, in Physics and Computer Science, is introduced.
(8792 views)
Book cover: Group TheoryGroup Theory
by - University of Lund
The text deals with basic Group Theory and its applications. Contents: Abstract Group Theory; Theory of Group Representations; Group Theory in Quantum Mechanics; Lie Groups; Atomic Physics; The Group SU2: Isospin; The Point Groups; The Group SU3.
(13157 views)