**Introduction to Lie Groups and Lie Algebras**

by Alexander Kirillov, Jr.

**Publisher**: SUNY at Stony Brook 2010**ISBN/ASIN**: 0521889693**Number of pages**: 136

**Description**:

The book covers the basic theory of Lie groups and Lie algebras. This classic graduate text focuses on the study of semisimple Lie algebras, developing the necessary theory along the way. The material covered ranges from basic definitions of Lie groups to the classification of finite-dimensional representations of semisimple Lie algebras.

Download or read it online for free here:

**Download link**

(1MB, PDF)

## Similar books

**Lectures on Semi-group Theory and its Application to Cauchy's Problem in Partial Differential Equations**

by

**K. Yosida**-

**Tata Institute of Fundamental Research**

In these lectures, we shall be concerned with the differentiability and the representation of one-parameter semi-groups of bounded linear operators on a Banach space and their applications to the initial value problem for differential equations.

(

**10991**views)

**Introduction to Groups, Invariants and Particles**

by

**Frank W. K. Firk**-

**Orange Grove Texts Plus**

This is an introduction to group theory, with an emphasis on Lie groups and their application to the study of symmetries of the fundamental constituents of matter. The text was written for seniors and advanced juniors, majoring in the physical sciences.

(

**18193**views)

**Galois Groups and Fundamental Groups**

by

**Leila Schneps**-

**Cambridge University Press**

This book contains eight articles which focus on presenting recently developed new aspects of the theory of Galois groups and fundamental groups, avoiding classical aspects which have already been developed at length in the standard literature.

(

**12525**views)

**Symmetry Groups and Their Applications**

by

**Willard Miller**-

**Academic Press**

A beginning graduate level book on applied group theory. Only those aspects of group theory are treated which are useful in the physical sciences, but the mathematical apparatus underlying the applications is presented with a high degree of rigor.

(

**14280**views)