Lagrangian Solid Modeling
by Matthew Marko
Publisher: viXra 2017
Number of pages: 114
Description:
The author demonstrates a stable Lagrangian solid modeling method, tracking the interactions of solid mass particles, rather than using a meshed grid. This numerical method avoids the problem of tensile instability often seen with Smooth Particle Applied Mechanics by having the solid particles apply stresses expected with Hooke's law, as opposed to using a smoothing function for neighboring solid particles.
Download or read it online for free here:
Download link
(13MB, PDF)
Similar books
Complex Fluids: The Physics of Emulsions
by M. E. Cates - arXiv
These lectures start with the mean field theory for a symmetric binary fluid mixture, addressing interfacial tension, the stress tensor, and the equations of motion (Model H). We then consider the phase separation kinetics of such a mixture.
(7876 views)
by M. E. Cates - arXiv
These lectures start with the mean field theory for a symmetric binary fluid mixture, addressing interfacial tension, the stress tensor, and the equations of motion (Model H). We then consider the phase separation kinetics of such a mixture.
(7876 views)
Atmospheric Convection
by David J. Raymond - New Mexico Tech
A graduate course in the physics of atmospheric convection: Governing equations of fluid dynamics; Convection and turbulence; Thermodynamics of moist convection; Simple models of convection; Microphysics of convection; Convection and the environment.
(16051 views)
by David J. Raymond - New Mexico Tech
A graduate course in the physics of atmospheric convection: Governing equations of fluid dynamics; Convection and turbulence; Thermodynamics of moist convection; Simple models of convection; Microphysics of convection; Convection and the environment.
(16051 views)
Solution Methods In Computational Fluid Dynamics
by T. H. Pulliam - NASA
Implicit finite difference schemes for solving two dimensional and three dimensional Euler and Navier-Stokes equations will be addressed. The methods are demonstrated in fully vectorized codes for a CRAY type architecture.
(14256 views)
by T. H. Pulliam - NASA
Implicit finite difference schemes for solving two dimensional and three dimensional Euler and Navier-Stokes equations will be addressed. The methods are demonstrated in fully vectorized codes for a CRAY type architecture.
(14256 views)
Turbulence for (and by) amateurs
by Denis Bernard - arXiv
Series of lectures on statistical turbulence written for amateurs but not experts. Elementary aspects and problems of turbulence in two and three dimensional Navier-Stokes equation are introduced. A few properties of scalar turbulence are described.
(10725 views)
by Denis Bernard - arXiv
Series of lectures on statistical turbulence written for amateurs but not experts. Elementary aspects and problems of turbulence in two and three dimensional Navier-Stokes equation are introduced. A few properties of scalar turbulence are described.
(10725 views)