**An Introduction to the Theory of Groups of Finite Order**

by Harold Hilton

**Publisher**: Oxford Clarendon Press 1908**ISBN/ASIN**: 1517364175**Number of pages**: 260

**Description**:

This book aims at introducing the reader to more advanced treatises and original papers on Groups of finite order. The subject requires for its study only an elementary knowledge of Algebra (especially Theory of Numbers), but the average student may nevertheless find the many excellent existing treatises rather stiff reading. I have tried to lighten for him the initial difficulties, and to show that even the most recent developments of pure Mathematics are not necessarily beyond the reach of the ordinary mathematical reader.

Download or read it online for free here:

**Download link**

(multiple formats)

## Similar books

**Representation Theory of Compact Groups**

by

**Michael Ruzhansky, Ville Turunen**-

**Aalto TKK**

Contents: Groups (Groups without topology, Group actions and representations); Topological groups (Compact groups, Haar measure, Fourier transforms on compact groups..); Linear Lie groups (Exponential map, Lie groups and Lie algebras); Hopf algebras.

(

**9286**views)

**Theory of Groups of Finite Order**

by

**William Burnside**-

**Cambridge University Press**

After introducing permutation notation and defining group, the author discusses the simpler properties of group that are independent of their modes of representation; composition-series of groups; isomorphism of a group with itself; etc.

(

**8492**views)

**Groups Around Us**

by

**Pavel Etingof**-

**Massachusetts Institute of Technology**

These are notes of a mini-course of group theory for high school students. This course covers the most basic parts of group theory with many applications. The notes contain many exercises, which are necessary for understanding the main text.

(

**2865**views)

**Lie groups and Lie algebras**

by

**N. Reshetikhin, V. Serganova, R. Borcherds**-

**UC Berkeley**

From the table of contents: Tangent Lie algebras to Lie groups; Simply Connected Lie Groups; Hopf Algebras; PBW Theorem and Deformations; Lie algebra cohomology; Engel's Theorem and Lie's Theorem; Cartan Criterion, Whitehead and Weyl Theorems; etc.

(

**10210**views)