Logo

Optimal and Learning Control for Autonomous Robots

Small book cover: Optimal and Learning Control for Autonomous Robots

Optimal and Learning Control for Autonomous Robots
by

Publisher: arXiv.org
Number of pages: 101

Description:
The starting point is the formulation of of an optimal control problem and deriving the different types of solutions and algorithms from there. These lecture notes aim at supporting this unified view with a unified notation wherever possible.

Home page url

Download or read it online for free here:
Download link
(1.2MB, PDF)

Similar books

Book cover: Understanding Machine Learning: From Theory to AlgorithmsUnderstanding Machine Learning: From Theory to Algorithms
by - Cambridge University Press
This book introduces machine learning and the algorithmic paradigms it offers. It provides a theoretical account of the fundamentals underlying machine learning and mathematical derivations that transform these principles into practical algorithms.
(9888 views)
Book cover: Introduction to Machine Learning for the SciencesIntroduction to Machine Learning for the Sciences
by - arXiv.org
This is an introductory machine learning course specifically developed with STEM students in mind, written by the theoretical Condensed Matter Theory group at the University of Zurich. We discuss supervised, unsupervised, and reinforcement learning.
(2823 views)
Book cover: Information Theory, Inference, and Learning AlgorithmsInformation Theory, Inference, and Learning Algorithms
by - Cambridge University Press
A textbook on information theory, Bayesian inference and learning algorithms, useful for undergraduates and postgraduates students, and as a reference for researchers. Essential reading for students of electrical engineering and computer science.
(28444 views)
Book cover: Gaussian Processes for Machine LearningGaussian Processes for Machine Learning
by - The MIT Press
Gaussian processes provide a principled, practical, probabilistic approach to learning in kernel machines. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics.
(27413 views)