**Solving PDEs in Python**

by Hans Petter Langtangen, Anders Logg

**Publisher**: Springer 2017**Number of pages**: 148

**Description**:

This book offers a concise and gentle introduction to finite element programming in Python based on the popular FEniCS software library. Using a series of examples, including the Poisson equation, the equations of linear elasticity, the incompressible Navier-Stokes equations, and systems of nonlinear advection-diffusion-reaction equations, it guides readers through the essential steps to quickly solving a PDE in FEniCS, such as how to define a finite variational problem, how to set boundary conditions, how to solve linear and nonlinear systems, and how to visualize solutions and structure finite element Python programs.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Notes on Harmonic Analysis**

by

**George Benthien**

Tutorial discussing some of the numerical aspects of practical harmonic analysis. Topics include Historical Background, Fourier Series and Integral Approximations, Convergence Improvement, Differentiation of Fourier Series and Sigma Factors, etc.

(

**7613**views)

**Lectures on Numerical Analysis**

by

**Dennis Deturck, Herbert S. Wilf**-

**University of Pennsylvania**

Contents: Differential and Difference Equations (Linear equations with constant coefficients, Difference equations, Stability theory); The Numerical Solution of Differential Equations (Euler's method); Numerical linear algebra.

(

**8603**views)

**Numerical Solutions of Engineering Problems**

by

**K. Nandakumar**-

**University of Alberta**

Contents: On mathematical models; Single nonlinear algebraic equation; System of linear and nonlinear algebraic equations; Numerical differentiation and integration; Ordinary differential equations; Boundary value problems; etc.

(

**8755**views)

**Geometric Transformation of Finite Element Methods: Theory and Applications**

by

**M. Holst, M. Licht**-

**arXiv.org**

We present a new technique to apply finite element methods to partial differential equations over curved domains. Bramble-Hilbert lemma is key in harnessing regularity in the physical problem to prove finite element convergence rates for the problem.

(

**2251**views)