Solving PDEs in Python by Hans Petter Langtangen, Anders Logg

Large book cover: Solving PDEs in Python

Solving PDEs in Python

Publisher: Springer
Number of pages: 148

This book offers a concise and gentle introduction to finite element programming in Python based on the popular FEniCS software library. Using a series of examples, including the Poisson equation, the equations of linear elasticity, the incompressible Navier-Stokes equations, and systems of nonlinear advection-diffusion-reaction equations, it guides readers through the essential steps to quickly solving a PDE in FEniCS, such as how to define a finite variational problem, how to set boundary conditions, how to solve linear and nonlinear systems, and how to visualize solutions and structure finite element Python programs.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Notes on Harmonic AnalysisNotes on Harmonic Analysis
Tutorial discussing some of the numerical aspects of practical harmonic analysis. Topics include Historical Background, Fourier Series and Integral Approximations, Convergence Improvement, Differentiation of Fourier Series and Sigma Factors, etc.
Book cover: Lectures on Numerical AnalysisLectures on Numerical Analysis
by - University of Pennsylvania
Contents: Differential and Difference Equations (Linear equations with constant coefficients, Difference equations, Stability theory); The Numerical Solution of Differential Equations (Euler's method); Numerical linear algebra.
Book cover: Numerical Solutions of Engineering ProblemsNumerical Solutions of Engineering Problems
by - University of Alberta
Contents: On mathematical models; Single nonlinear algebraic equation; System of linear and nonlinear algebraic equations; Numerical differentiation and integration; Ordinary differential equations; Boundary value problems; etc.
Book cover: Geometric Transformation of Finite Element Methods: Theory and ApplicationsGeometric Transformation of Finite Element Methods: Theory and Applications
by - arXiv.org
We present a new technique to apply finite element methods to partial differential equations over curved domains. Bramble-Hilbert lemma is key in harnessing regularity in the physical problem to prove finite element convergence rates for the problem.