Logo

The Mathematical Theory of Relativity

Large book cover: The Mathematical Theory of Relativity

The Mathematical Theory of Relativity
by

Publisher: Cambridge University Press
Number of pages: 448

Description:
Sir Arthur Eddington here formulates mathematically his conception of the world of physics derived from the theory of relativity. The argument is developed in a form which throws light on the origin and significance of the great laws of physics; its consequences are followed to the full extent in the consideration of gravitation, relativity, mechanics, space-time, electromagnetic phenomena and world geometry.

Home page url

Download or read it online for free here:
Download link
(1.3MB, PDF)

Similar books

Book cover: Vector Analysis and the Theory of RelativityVector Analysis and the Theory of Relativity
by - Johns Hopkins press
This monograph is the outcome of lectures delivered to the graduate department of mathematics of The Johns Hopkins University. Considerations of space have made it somewhat condensed in form, but the mode of presentation is sufficiently novel.
(14487 views)
Book cover: A No-Nonsense Introduction to General RelativityA No-Nonsense Introduction to General Relativity
by
General relativity has a reputation of being extremely difficult. This introduction is a very pragmatic affair, intended to give you some immediate feel for the language of GR. It does not substitute for a deep understanding -- that takes more work.
(7947 views)
Book cover: An Introduction to the Theory of Rotating Relativistic StarsAn Introduction to the Theory of Rotating Relativistic Stars
by - arXiv
These notes introduce the theory of rotating stars in general relativity. The focus is on the theoretical foundations, with a detailed discussion of the spacetime symmetries, the choice of coordinates and the derivation of the equations of structure.
(11505 views)
Book cover: Complex Geometry of Nature and General RelativityComplex Geometry of Nature and General Relativity
by - arXiv
An attempt is made of giving a self-contained introduction to holomorphic ideas in general relativity, following work over the last thirty years by several authors. The main topics are complex manifolds, spinor and twistor methods, heaven spaces.
(16092 views)