Logo

Foundations of Machine Learning

Large book cover: Foundations of Machine Learning

Foundations of Machine Learning
by

Publisher: The MIT Press
ISBN-13: 9780262039406
Number of pages: 504

Description:
This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools needed for the discussion and justification of algorithms. It also describes several key aspects of the application of these algorithms.

Home page url

Download or read it online for free here:
Read online
(online reading)

Similar books

Book cover: Practical Artificial Intelligence Programming in JavaPractical Artificial Intelligence Programming in Java
by - Lulu.com
The book uses the author's libraries and the best of open source software to introduce AI (Artificial Intelligence) technologies like neural networks, genetic algorithms, expert systems, machine learning, and NLP (natural language processing).
(25585 views)
Book cover: Understanding Machine Learning: From Theory to AlgorithmsUnderstanding Machine Learning: From Theory to Algorithms
by - Cambridge University Press
This book introduces machine learning and the algorithmic paradigms it offers. It provides a theoretical account of the fundamentals underlying machine learning and mathematical derivations that transform these principles into practical algorithms.
(10990 views)
Book cover: Gaussian Processes for Machine LearningGaussian Processes for Machine Learning
by - The MIT Press
Gaussian processes provide a principled, practical, probabilistic approach to learning in kernel machines. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics.
(28633 views)
Book cover: Reinforcement Learning and Optimal ControlReinforcement Learning and Optimal Control
by - Athena Scientific
The book considers large and challenging multistage decision problems, which can be solved by dynamic programming and optimal control, but their exact solution is computationally intractable. We discuss solution methods that rely on approximations.
(10265 views)