**Quick Introduction to Tensor Analysis**

by Ruslan Sharipov

**Publisher**: Samizdat Press 2004**Number of pages**: 47

**Description**:

The author wrote this book in a 'do-it-yourself' style so that he gave only a draft of tensor theory, which includes formulating definitions and theorems and giving basic ideas and formulas. All other work such as proving consistence of definitions, deriving formulas, proving theorems or completing details to proofs is left to the reader in the form of numerous exercises. This style makes learning the subject really quick and more effective for understanding and memorizing.

Download or read it online for free here:

**Download link**

(450KB, PDF)

## Similar books

**Tensor Calculus**

by

**Taha Sochi**-

**viXra**

These notes are the second part of the tensor calculus documents. In this text we continue the discussion of selected topics of the subject at a higher level expanding, when necessary, some topics and developing further concepts and techniques.

(

**3858**views)

**An Introduction to Tensors for Students of Physics and Engineering**

by

**Joseph C. Kolecki**-

**Glenn Research Center**

The book should serve as a bridge to the place where most texts on tensor analysis begin. A semi-intuitive approach to those notions underlying tensor analysis is given via scalars, vectors, dyads, triads, and similar higher-order vector products.

(

**6217**views)

**Tensor Analysis**

by

**Edward Nelson**-

**Princeton Univ Pr**

The lecture notes for the first part of a one-term course on differential geometry given at Princeton in the spring of 1967. They are an expository account of the formal algebraic aspects of tensor analysis using both modern and classical notations.

(

**14606**views)

**Introduction to Vectors and Tensors Volume 1: Linear and Multilinear Algebra**

by

**Ray M. Bowen, C.-C.Wang**-

**Springer**

This book presents the basics of vector and tensor analysis for science and engineering students. Volume 1 covers algebraic structures and a modern introduction to the algebra of vectors and tensors. Clear presentation of mathematical concepts.

(

**14405**views)