Logo

Introduction to Tensor Calculus

Small book cover: Introduction to Tensor Calculus

Introduction to Tensor Calculus
by

Publisher: University of Heidelberg
Number of pages: 53

Description:
This booklet contains an explanation about tensor calculus for students of physics and engineering with a basic knowledge of linear algebra. The focus lies mainly on acquiring an understanding of the principles and ideas underlying the concept of 'tensor'.

Home page url

Download or read it online for free here:
Download link
(330KB, PDF)

Similar books

Book cover: Introduction to Vectors and Tensors Volume 2: Vector and Tensor AnalysisIntroduction to Vectors and Tensors Volume 2: Vector and Tensor Analysis
by
The textbook presents introductory concepts of vector and tensor analysis, suitable for a one-semester course. Volume II discusses Euclidean Manifolds followed by the analytical and geometrical aspects of vector and tensor fields.
(13693 views)
Book cover: An Introduction to Tensors for Students of Physics and EngineeringAn Introduction to Tensors for Students of Physics and Engineering
by - Glenn Research Center
The book should serve as a bridge to the place where most texts on tensor analysis begin. A semi-intuitive approach to those notions underlying tensor analysis is given via scalars, vectors, dyads, triads, and similar higher-order vector products.
(5635 views)
Book cover: Functional and Structured Tensor Analysis for EngineersFunctional and Structured Tensor Analysis for Engineers
by - The University of Utah
A step-by-step introduction to tensor analysis that assumes you know nothing but basic calculus. Considerable emphasis is placed on a notation style that works well for applications in materials modeling, but other notation styles are also reviewed.
(9177 views)
Book cover: Symbolic Tensor Calculus on Manifolds: a SageMath ImplementationSymbolic Tensor Calculus on Manifolds: a SageMath Implementation
by - arXiv.org
These lecture notes present a method for symbolic tensor calculus that runs on fully specified smooth manifolds (described by an atlas), that is not limited to a single coordinate chart or vector frame, and runs even on non-parallelizable manifolds.
(1340 views)