**Algorithms for Modular Elliptic Curves**

by J. E. Cremona

**Publisher**: Cambridge University Press 1992**ISBN/ASIN**: 0521418135**ISBN-13**: 9780521418133**Number of pages**: 351

**Description**:

Elliptic curves are of central importance in computational number theory with numerous applications in such areas as cryptography primality testing and factorization. This book presents a thorough treatment of many algorithms concerning the arithmetic of elliptic curves complete with computer implementation. In the first part the author describes in detail the construction of modular elliptic curves giving an explicit algorithm for their computation. Then a collection of algorithms for the arithmetic of elliptic curves is presented, some of these have not appeared in book form before. Finally an extensive set of tables is provided giving the results of the author's implementations of the algorithms.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**On Some of Smarandache's Problems**

by

**Krassimir Atanassov**-

**Erhus Univ Pr**

A collection of 27 Smarandache's problems which the autor solved by 1999. 22 problems are related to different sequences, 4 problems are proved, modifications of two problems are formulated, and counterexamples to two of the problems are constructed.

(

**6936**views)

**Lectures On Irregularities Of Distribution**

by

**Wolfgang M. Schmidt**-

**Tata Institute of Fundamental Research**

The theory of Irregularities of Distribution began as a branch of Uniform Distributions, but is of independent interest. In these lectures the author restricted himself to distribution problems with a geometric interpretation.

(

**4522**views)

**Langlands Correspondence for Loop Groups**

by

**Edward Frenkel**-

**Cambridge University Press**

This book provides a review of an important aspect of the geometric Langlands program - the role of representation theory of affine Kac-Moody algebras. It provides introductions to such notions as vertex algebras, the Langlands dual group, etc.

(

**4833**views)

**Geometry of Numbers with Applications to Number Theory**

by

**Pete L. Clark**-

**University of Georgia**

The goal is to find and explore open questions in both geometry of numbers -- e.g. Lattice Point Enumerators, the Ehrhart-Polynomial, Minkowski's Convex Body Theorems, Minkowski-Hlawka Theorem, ... -- and its applications to number theory.

(

**4779**views)