**Algorithms for Modular Elliptic Curves**

by J. E. Cremona

**Publisher**: Cambridge University Press 1992**ISBN/ASIN**: 0521418135**ISBN-13**: 9780521418133**Number of pages**: 351

**Description**:

Elliptic curves are of central importance in computational number theory with numerous applications in such areas as cryptography primality testing and factorization. This book presents a thorough treatment of many algorithms concerning the arithmetic of elliptic curves complete with computer implementation. In the first part the author describes in detail the construction of modular elliptic curves giving an explicit algorithm for their computation. Then a collection of algorithms for the arithmetic of elliptic curves is presented, some of these have not appeared in book form before. Finally an extensive set of tables is provided giving the results of the author's implementations of the algorithms.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Modular Forms, Hecke Operators, and Modular Abelian Varieties**

by

**Kenneth A. Ribet, William A. Stein**-

**University of Washington**

Contents: The Main objects; Modular representations and algebraic curves; Modular Forms of Level 1; Analytic theory of modular curves; Modular Symbols; Modular Forms of Higher Level; Newforms and Euler Products; Hecke operators as correspondences...

(

**5498**views)

**Geometric Theorems and Arithmetic Functions**

by

**Jozsef Sandor**-

**American Research Press**

Contents: on Smarandache's Podaire theorem, Diophantine equation, the least common multiple of the first positive integers, limits related to prime numbers, a generalized bisector theorem, values of arithmetical functions and factorials, and more.

(

**12631**views)

**Essays on the Theory of Numbers**

by

**Richard Dedekind**-

**The Open Court Publishing**

This is a book combining two essays: 'Continuity and irrational numbers' - Dedekind's way of defining the real numbers from rational numbers; and 'The nature and meaning of numbers' where Dedekind offers a precise explication of the natural numbers.

(

**8760**views)

**An Introduction to the Smarandache Function**

by

**Charles Ashbacher**-

**Erhus Univ Pr**

In the 1970's a Rumanian mathematician Florentin Smarandache created a new function in number theory, which consequences encompass many areas of mathematics.The purpose of this text is to examine some of those consequences.

(

**8047**views)