**Algorithms for Modular Elliptic Curves**

by J. E. Cremona

**Publisher**: Cambridge University Press 1992**ISBN/ASIN**: 0521418135**ISBN-13**: 9780521418133**Number of pages**: 351

**Description**:

Elliptic curves are of central importance in computational number theory with numerous applications in such areas as cryptography primality testing and factorization. This book presents a thorough treatment of many algorithms concerning the arithmetic of elliptic curves complete with computer implementation. In the first part the author describes in detail the construction of modular elliptic curves giving an explicit algorithm for their computation. Then a collection of algorithms for the arithmetic of elliptic curves is presented, some of these have not appeared in book form before. Finally an extensive set of tables is provided giving the results of the author's implementations of the algorithms.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Notes on Fermionic Fock Space for Number Theorists**

by

**Greg W. Anderson**-

**The University of Arizona**

This is a compilation of exercises, worked examples and key references that the author compiled in order to help readers learn their way around fermionic Fock space. The text is suitable for use by graduate students with an interest in number theory.

(

**8291**views)

**Pluckings from the tree of Smarandache: Sequences and functions**

by

**Charles Ashbacher**-

**American Research Press**

The third book in a series exploring the set of problems called Smarandache Notions. This work delves more deeply into the mathematics of the problems, the level of difficulty here will be somewhat higher than that of the previous books.

(

**13705**views)

**An Introduction to the Smarandache Function**

by

**Charles Ashbacher**-

**Erhus Univ Pr**

In the 1970's a Rumanian mathematician Florentin Smarandache created a new function in number theory, which consequences encompass many areas of mathematics.The purpose of this text is to examine some of those consequences.

(

**8940**views)

**Geometry of Numbers with Applications to Number Theory**

by

**Pete L. Clark**-

**University of Georgia**

The goal is to find and explore open questions in both geometry of numbers -- e.g. Lattice Point Enumerators, the Ehrhart-Polynomial, Minkowski's Convex Body Theorems, Minkowski-Hlawka Theorem, ... -- and its applications to number theory.

(

**6208**views)