**Super Linear Algebra**

by W. B. V. Kandasamy, F. Smarandache

**Publisher**: InfoQuest 2008**ISBN/ASIN**: 1599730650**ISBN-13**: 9781599730653**Number of pages**: 293

**Description**:

In this book, the authors introduce the notion of Super linear algebra and super vector spaces using the definition of super matrices defined by Horst (1963). This book expects the readers to be well-versed in linear algebra. Many theorems on super linear algebra and its properties are proved. Some theorems are left as exercises for the reader.

Download or read it online for free here:

**Download link**

(3.7MB, PDF)

## Similar books

**Numerical Methods for Large Eigenvalue Problems**

by

**Yousef Saad**-

**SIAM**

This book discusses numerical methods for computing eigenvalues and eigenvectors of large sparse matrices. It provides an in-depth view of the numerical methods for solving matrix eigenvalue problems that arise in various engineering applications.

(

**8216**views)

**Introduction to Linear Bialgebra**

by

**W.B.V. Kandasamy, F. Smarandache, K. Ilanthenral**-

**arXiv**

This book introduced a new algebraic structure called linear bialgebra. We have ventured in this book to introduce new concepts like linear bialgebra and Smarandache neutrosophic linear bialgebra and also give the applications of these structures.

(

**7118**views)

**Lectures on Linear Algebra and Matrices**

by

**G. Donald Allen**-

**Texas A&M University**

Contents: Vectors and Vector Spaces; Matrices and Linear Algebra; Eigenvalues and Eigenvectors; Unitary Matrices; Hermitian Theory; Normal Matrices; Factorization Theorems; Jordan Normal Form; Hermitian and Symmetric Matrices; Nonnegative Matrices.

(

**9132**views)

**Linear Algebra Examples C-1: Linear equations, matrices and determinants**

by

**Leif Mejlbro**-

**BookBoon**

The book is a collection of solved problems in linear equations, matrices and determinants. All examples are solved, and the solutions consist of step-by-step instructions, and are designed to assist students in methodically solving problems.

(

**11449**views)