**Linear algebra via exterior products**

by Sergei Winitzki

**Publisher**: Ludwig-Maximilians University 2009**Number of pages**: 82

**Description**:

A pedagogical introduction to the coordinate-free approach in basic finite-dimensional linear algebra. The reader should be already exposed to the elementary array-based formalism of vector and matrix calculations. In this book, the author makes extensive use of the exterior product of vectors. He shows how the standard properties of determinants, the Liouville formula, the Hamilton-Cayley theorem, and Pfaffians, as well as some results concerning eigenspace projectors can be derived without cumbersome matrix calculations.

Download or read it online for free here:

**Download link**

(1.6MB, PDF)

## Similar books

**Numerical Methods for Large Eigenvalue Problems**

by

**Yousef Saad**-

**SIAM**

This book discusses numerical methods for computing eigenvalues and eigenvectors of large sparse matrices. It provides an in-depth view of the numerical methods for solving matrix eigenvalue problems that arise in various engineering applications.

(

**8582**views)

**Set Linear Algebra and Set Fuzzy Linear Algebra**

by

**W. B. V. Kandasamy, F. Smarandache, K. Ilanthenral**-

**InfoLearnQuest**

Set linear algebras, introduced by the authors in this book, are the most generalized form of linear algebras. These structures make use of very few algebraic operations and are easily accessible to non-mathematicians as well.

(

**8233**views)

**Applied and Computational Linear Algebra: A First Course**

by

**Charles L. Byrne**-

**University of Massachusetts Lowell**

This book is a text for a graduate course that focuses on applications of linear algebra and on the algorithms used to solve the problems that arise in those applications. Tthe particular nature of the applications will prompt us to seek algorithms.

(

**6088**views)

**A Second Semester of Linear Algebra**

by

**S. E. Payne**-

**University of Colorado Denver**

This book is written as a text for a second semester of linear algebra at the senior or first-year-graduate level. It is assumed that you already have successfully completed a first course in linear algebra and a first course in abstract algebra.

(

**13627**views)