**Templates for the Solution of Linear Systems**

by Richard Barrett et al.

**Publisher**: Society for Industrial Mathematics 1987**ISBN/ASIN**: 0898713285**ISBN-13**: 9780898713282**Number of pages**: 117

**Description**:

In this book, which focuses on the use of iterative methods for solving large sparse systems of linear equations, templates are introduced to meet the needs of both the traditional user and the high-performance specialist. Templates, a description of a general algorithm rather than the executable object or source code more commonly found in a conventional software library, offer whatever degree of customization the user may desire.

Download or read it online for free here:

**Download link**

(740 KB, PDF)

## Similar books

**The Hermitian Two Matrix Model with an Even Quartic Potential**

by

**M. Duits, A.B.J. Kuijlaars, M. Yue Mo**-

**American Mathematical Society**

The authors consider the two matrix model with an even quartic potential and an even polynomial potential. The main result is the formulation of a vector equilibrium problem for the limiting mean density for the eigenvalues of one of the matrices.

(

**1260**views)

**Notes on Linear Algebra**

by

**Peter J. Cameron**-

**Queen Mary, University of London**

On the theoretical side, we deal with vector spaces, linear maps, and bilinear forms. On the practical side, the subject is really about one thing: matrices. This module is a mixture of abstract theory and concrete calculations with matrices.

(

**6842**views)

**Special Set Linear Algebra and Special Set Fuzzy Linear Algebra**

by

**W. B. V. Kandasamy, F. Smarandache, K. Ilanthenral**-

**CuArt**

Special Set Linear Algebras introduced by the authors in this free book is an extension of Set Linear Algebras, which are the most generalized form of linear algebras. These structures can be applied to multi-expert models.

(

**6761**views)

**A Second Semester of Linear Algebra**

by

**S. E. Payne**-

**University of Colorado Denver**

This book is written as a text for a second semester of linear algebra at the senior or first-year-graduate level. It is assumed that you already have successfully completed a first course in linear algebra and a first course in abstract algebra.

(

**13627**views)