Linear Algebra
by Peter Petersen
Publisher: UCLA 2007
Number of pages: 300
Description:
This book covers the aspects of linear algebra that are included in most advanced undergraduate texts. All the usual topics from complex vectors spaces, complex inner products, The Spectral theorem for normal operators, dual spaces, quotient spaces, the minimal polynomial, the Jordan canonical form, and the rational canonical form are explained. A chapter on determinants has been included as the last chapter.
Download or read it online for free here:
Download link
(1.2MB, PDF)
Similar books

by G. Donald Allen - Texas A&M University
Contents: Vectors and Vector Spaces; Matrices and Linear Algebra; Eigenvalues and Eigenvectors; Unitary Matrices; Hermitian Theory; Normal Matrices; Factorization Theorems; Jordan Normal Form; Hermitian and Symmetric Matrices; Nonnegative Matrices.
(13185 views)

by William Thomson
Every important principle has been illustrated by copious examples, a considerable number of which have been fully worked out. As my main object has been to produce a textbook suitable for beginners, many important theorems have been omitted.
(5252 views)

by W. B. V. Kandasamy, F. Smarandache - InfoLearnQuest
This book is a continuation of the book n-linear algebra of type I. Most of the properties that could not be derived or defined for n-linear algebra of type I is made possible in this new structure which is introduced in this book.
(10759 views)

by W. B. V. Kandasamy, F. Smarandache - InfoQuest
In this book, the authors introduce the notion of Super linear algebra and super vector spaces using the definition of super matrices defined by Horst (1963). This book expects the readers to be well-versed in linear algebra.
(15162 views)