Logo

Homogeneous Spaces and Equivariant Embeddings

Small book cover: Homogeneous Spaces and Equivariant Embeddings

Homogeneous Spaces and Equivariant Embeddings
by

Publisher: arXiv
Number of pages: 250

Description:
This is a monograph on homogeneous spaces of algebraic groups and their equivariant embeddings. Some results are supplied with proofs, while the other are cited with references to the original papers. Starting with basic properties of algebraic homogeneous spaces, the author focuses on homogeneous spaces of reductive groups and introduces two invariants: complexity and rank. He considers the Luna-Vust theory of equivariant embeddings, paying attention to the case of complexity not greater than one.

Home page url

Download or read it online for free here:
Download link
(2.3MB, PDF)

Similar books

Book cover: Complex Analytic and Differential GeometryComplex Analytic and Differential Geometry
by - Universite de Grenoble
Basic concepts of complex geometry, coherent sheaves and complex analytic spaces, positive currents and potential theory, sheaf cohomology and spectral sequences, Hermitian vector bundles, Hodge theory, positive vector bundles, etc.
(18004 views)
Book cover: An Introduction to Semialgebraic GeometryAn Introduction to Semialgebraic Geometry
by - Universite de Rennes
Semialgebraic geometry is the study of sets of real solutions of systems of polynomial equations and inequalities. These notes present the first results of semialgebraic geometry and related algorithmic issues. Their content is by no means original.
(12952 views)
Book cover: Computations in Algebraic Geometry with Macaulay 2Computations in Algebraic Geometry with Macaulay 2
by - Springer
This book presents algorithmic tools for algebraic geometry and experimental applications of them. It also introduces a software system in which the tools have been implemented and with which the experiments can be carried out.
(11605 views)
Book cover: Lectures on Algebraic GroupsLectures on Algebraic Groups
by - University of Oregon
Contents: General Algebra; Commutative Algebra; Affine and Projective Algebraic Sets; Varieties; Morphisms; Tangent spaces; Complete Varieties; Basic Concepts; Lie algebra of an algebraic group; Quotients; Semisimple and unipotent elements; etc.
(12901 views)