**Homogeneous Spaces and Equivariant Embeddings**

by Dmitri A. Timashev

**Publisher**: arXiv 2006**Number of pages**: 250

**Description**:

This is a monograph on homogeneous spaces of algebraic groups and their equivariant embeddings. Some results are supplied with proofs, while the other are cited with references to the original papers. Starting with basic properties of algebraic homogeneous spaces, the author focuses on homogeneous spaces of reductive groups and introduces two invariants: complexity and rank. He considers the Luna-Vust theory of equivariant embeddings, paying attention to the case of complexity not greater than one.

Download or read it online for free here:

**Download link**

(2.3MB, PDF)

## Similar books

**Abelian Varieties**

by

**J. S. Milne**

Introduction to both the geometry and the arithmetic of abelian varieties. It includes a discussion of the theorems of Honda and Tate concerning abelian varieties over finite fields and the paper of Faltings in which he proves Mordell's Conjecture.

(

**8412**views)

**Geometry Unbound**

by

**Kiran S. Kedlaya**

This is not a typical math textbook, it does not present full developments of key theorems, but it leaves strategic gaps in the text for the reader to fill in. The original text underlying this book was a set of notes for the Math Olympiad Program.

(

**10360**views)

**Lectures on Siegel's Modular Functions**

by

**H. Maass**-

**Tata Institute of Fundamental Research**

Contents: Modular Group of Degree n; Symplectic group of degree n; Reduction Theory of Positive Definite Quadratic Forms; Fundamental Domain of the Modular Group of Degree n; Modular Forms of Degree n; Algebraic dependence of modular forms; etc.

(

**6662**views)

**Algebraic Geometry**

by

**J.S. Milne**

These notes are an introduction to the theory of algebraic varieties. In contrast to most such accounts they study abstract algebraic varieties, not just subvarieties of affine and projective space. This approach leads naturally to scheme theory.

(

**10602**views)