Logo

Homogeneous Spaces and Equivariant Embeddings

Small book cover: Homogeneous Spaces and Equivariant Embeddings

Homogeneous Spaces and Equivariant Embeddings
by

Publisher: arXiv
Number of pages: 250

Description:
This is a monograph on homogeneous spaces of algebraic groups and their equivariant embeddings. Some results are supplied with proofs, while the other are cited with references to the original papers. Starting with basic properties of algebraic homogeneous spaces, the author focuses on homogeneous spaces of reductive groups and introduces two invariants: complexity and rank. He considers the Luna-Vust theory of equivariant embeddings, paying attention to the case of complexity not greater than one.

Home page url

Download or read it online for free here:
Download link
(2.3MB, PDF)

Similar books

Book cover: Strings and GeometryStrings and Geometry
by - American Mathematical Society
This volume highlights the interface between string theory and algebraic geometry. The topics covered include manifolds of special holonomy, supergravity, supersymmetry, D-branes, the McKay correspondence and the Fourier-Mukai transform.
(11790 views)
Book cover: Abel's Theorem and the Allied TheoryAbel's Theorem and the Allied Theory
by - Cambridge University Press
This classic book covers the whole of algebraic geometry and associated theories. Baker discusses the subject in terms of transcendental functions, and theta functions in particular. Many of the ideas put forward are of continuing relevance today.
(5743 views)
Book cover: Lectures on Moduli of CurvesLectures on Moduli of Curves
by - Tata Institute of Fundamental Research
These lecture notes are based on some lectures given in 1980. The object of the lectures was to construct a projective moduli space for stable curves of genus greater than or equal two using Mumford's geometric invariant theory.
(7549 views)
Book cover: Geometric Complexity Theory: An Introduction for GeometersGeometric Complexity Theory: An Introduction for Geometers
by - arXiv
This is survey of recent developments in, and a tutorial on, the approach to P v. NP and related questions called Geometric Complexity Theory. The article is written to be accessible to graduate students. Numerous open questions are presented.
(6899 views)