Introduction to Physics for Mathematicians
by Igor Dolgachev
1996
Number of pages: 285
Description:
A set of class notes in Introduction to Physics taken by math graduate students. The goal of this course was to introduce some basic concepts from theoretical physics which play so fundamental role in a recent intermarriage between physics and pure mathematics. No physical background was assumed.
Download or read it online for free here:
Download link
(1.1MB, PDF)
Similar books
Introduction to Quantum Integrability
by A. Doikou, S. Evangelisti, G. Feverati, N. Karaiskos - arXiv
The authors review the basic concepts regarding quantum integrability. Special emphasis is given on the algebraic content of integrable models. A short review on quantum groups as well as the quantum inverse scattering method is also presented.
(6083 views)
by A. Doikou, S. Evangelisti, G. Feverati, N. Karaiskos - arXiv
The authors review the basic concepts regarding quantum integrability. Special emphasis is given on the algebraic content of integrable models. A short review on quantum groups as well as the quantum inverse scattering method is also presented.
(6083 views)
Step-by-Step BS to PhD Math/Physics
by Alex Alaniz - UC Riverside
These are step-by-verifiable-step notes which are designed to help students with a year of calculus based physics who are about to enroll in ordinary differential equations go all the way to doctoral foundations in either mathematics or physics.
(8599 views)
by Alex Alaniz - UC Riverside
These are step-by-verifiable-step notes which are designed to help students with a year of calculus based physics who are about to enroll in ordinary differential equations go all the way to doctoral foundations in either mathematics or physics.
(8599 views)
Navier-Stokes Equations: On the Existence and the Search Method for Global Solutions
by Solomon I. Khmelnik - MiC
In this book we formulate and prove the variational extremum principle for viscous incompressible and compressible fluid, from which principle follows that the Navier-Stokes equations represent the extremum conditions of a certain functional.
(6376 views)
by Solomon I. Khmelnik - MiC
In this book we formulate and prove the variational extremum principle for viscous incompressible and compressible fluid, from which principle follows that the Navier-Stokes equations represent the extremum conditions of a certain functional.
(6376 views)
Mathematical Methods of Physics
- Wikibooks
A book on common techniques of applied mathematics that are often used in theoretical physics. It may be accessible to anyone with beginning undergraduate training in mathematics and physics. It is useful for anyone wishing to study advanced Physics.
(6780 views)
- Wikibooks
A book on common techniques of applied mathematics that are often used in theoretical physics. It may be accessible to anyone with beginning undergraduate training in mathematics and physics. It is useful for anyone wishing to study advanced Physics.
(6780 views)