**Introduction to Physics for Mathematicians**

by Igor Dolgachev

1996**Number of pages**: 285

**Description**:

A set of class notes in Introduction to Physics taken by math graduate students. The goal of this course was to introduce some basic concepts from theoretical physics which play so fundamental role in a recent intermarriage between physics and pure mathematics. No physical background was assumed.

Download or read it online for free here:

**Download link**

(1.1MB, PDF)

## Similar books

**Lecture Notes on Mathematical Methods of Classical Physics**

by

**Vicente Cortes, Alexander S. Haupt**-

**arXiv**

Topics include Lagrangian Mechanics, Hamiltonian Mechanics, Hamilton-Jacobi Theory, Classical Field Theory formulated in the language of jet bundles, field theories such as sigma models, gauge theory, and Einstein's theory of general relativity.

(

**2895**views)

**Lectures on Integrable Hamiltonian Systems**

by

**G.Sardanashvily**-

**arXiv**

We consider integrable Hamiltonian systems in a general setting of invariant submanifolds which need not be compact. This is the case a global Kepler system, non-autonomous integrable Hamiltonian systems and systems with time-dependent parameters.

(

**4202**views)

**Harmonic Oscillators and Two-by-two Matrices in Symmetry Problems in Physics**

by

**Young Suh Kim (ed.)**-

**MDPI AG**

With a degree of exaggeration, modern physics is the physics of harmonic oscillators and two-by-two matrices. Indeed, they constitute the basic language for the symmetry problems in physics, and thus the main theme of this journal.

(

**968**views)

**LieART: A Mathematica Application for Lie Algebras and Representation Theory**

by

**Robert Feger, Thomas W. Kephart**-

**arXiv**

We present the Mathematica application LieART (Lie Algebras and Representation Theory) for computations in Lie Algebras and representation theory, such as tensor product decomposition and subalgebra branching of irreducible representations.

(

**4725**views)