**Introduction to Physics for Mathematicians**

by Igor Dolgachev

1996**Number of pages**: 285

**Description**:

A set of class notes in Introduction to Physics taken by math graduate students. The goal of this course was to introduce some basic concepts from theoretical physics which play so fundamental role in a recent intermarriage between physics and pure mathematics. No physical background was assumed.

Download or read it online for free here:

**Download link**

(1.1MB, PDF)

## Similar books

**Lie Groups in Physics**

by

**G. 't Hooft, M. J. G. Veltman**-

**Utrecht University**

Contents: Quantum mechanics and rotation invariance; The group of rotations in three dimensions; More about representations; Ladder operators; The group SU(2); Spin and angular distributions; Isospin; The Hydrogen Atom; The group SU(3); etc.

(

**10936**views)

**Lie Systems: Theory, Generalisations, and Applications**

by

**J.F. Carinena, J. de Lucas**-

**arXiv**

Lie systems form a class of systems of first-order ordinary differential equations whose general solutions can be described in terms of certain finite families of particular solutions and a set of constants, by means of a particular type of mapping.

(

**6088**views)

**Lectures on Nonlinear Integrable Equations and their Solutions**

by

**A. Zabrodin**-

**arXiv.org**

This is an introductory course on nonlinear integrable partial differential and differential-difference equations based on lectures given for students of Moscow Institute of Physics and Technology and Higher School of Economics.

(

**1409**views)

**Lectures on the Singularities of the Three-Body Problem**

by

**C.L. Siegel**-

**Tata Institute of Fundamental Research**

From the table of contents: The differential equations of mechanics; The three-body problem : simple collisions (The n-body problem); The three-body problem: general collision (Stability theory of solutions of differential equations).

(

**6112**views)