Introduction to Physics for Mathematicians

Introduction to Physics for Mathematicians

Number of pages: 285

A set of class notes in Introduction to Physics taken by math graduate students. The goal of this course was to introduce some basic concepts from theoretical physics which play so fundamental role in a recent intermarriage between physics and pure mathematics. No physical background was assumed.

Home page url

Download or read it online for free here:
Download link
(1.1MB, PDF)

Similar books

Book cover: Mathematics for Theoretical PhysicsMathematics for Theoretical Physics
by - arXiv
This is a comprehensive and precise coverage of the mathematical concepts and tools used in present theoretical physics: differential geometry, Lie groups, fiber bundles, Clifford algebra, differential operators, normed algebras, connections, etc.
Book cover: The Landscape of Theoretical PhysicsThe Landscape of Theoretical Physics
by - arXiv
This a book is for those who would like to learn something about special and general relativity beyond the usual textbooks, about quantum field theory, the elegant Fock-Schwinger-Stueckelberg proper time formalism, and much more.
Book cover: An Introduction to Topos PhysicsAn Introduction to Topos Physics
by - arXiv
The basic notion of how topoi can be utilized in physics is presented here. Topos and category theory serve as valuable tools which extend our ordinary set-theoretical conceptions, can give rise to new descriptions of quantum physics.
Book cover: Quantum Spin Systems on Infinite LatticesQuantum Spin Systems on Infinite Lattices
by - arXiv
These are the lecture notes for a one semester course at Leibniz University Hannover. The main aim of the course is to give an introduction to the mathematical methods used in describing discrete quantum systems consisting of infinitely many sites.