**Navier-Stokes Equations: On the Existence and the Search Method for Global Solutions**

by Solomon I. Khmelnik

**Publisher**: MiC 2011**ISBN/ASIN**: 1456468510**ISBN-13**: 9781456468514**Number of pages**: 105

**Description**:

In this book we formulate and prove the variational extremum principle for viscous incompressible and compressible fluid, from which principle follows that the Navier-Stokes equations represent the extremum conditions of a certain functional. We describe the method of seeking solution for these equations, which consists in moving along the gradient to this functional extremum.

Download or read it online for free here:

**Download link**

(4.6MB, PDF)

## Similar books

**Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem**

by

**Peter B. Gilkey**-

**Publish or Perish Inc.**

This book treats the Atiyah-Singer index theorem using the heat equation, which gives a local formula for the index of any elliptic complex. Heat equation methods are also used to discuss Lefschetz fixed point formulas and the Gauss-Bonnet theorem.

(

**5039**views)

**Mathemathical Methods of Theoretical Physics**

by

**Karl Svozil**-

**Edition Funzl**

This book presents the course material for mathemathical methods of theoretical physics intended for an undergraduate audience. The author most humbly presents his own version of what is important for standard courses of contemporary physics.

(

**4623**views)

**Mathematics for the Physical Sciences**

by

**Herbert S Wilf**-

**Dover Publications**

The book for the advanced undergraduates and graduates in the natural sciences. Vector spaces and matrices, orthogonal functions, polynomial equations, asymptotic expansions, ordinary differential equations, conformal mapping, and extremum problems.

(

**34873**views)

**Clifford Algebra, Geometric Algebra, and Applications**

by

**Douglas Lundholm, Lars Svensson**-

**arXiv**

These are lecture notes for a course on the theory of Clifford algebras. The various applications include vector space and projective geometry, orthogonal maps and spinors, normed division algebras, as well as simplicial complexes and graph theory.

(

**8002**views)