Navier-Stokes Equations: On the Existence and the Search Method for Global Solutions
by Solomon I. Khmelnik
Publisher: MiC 2011
ISBN/ASIN: 1456468510
ISBN-13: 9781456468514
Number of pages: 105
Description:
In this book we formulate and prove the variational extremum principle for viscous incompressible and compressible fluid, from which principle follows that the Navier-Stokes equations represent the extremum conditions of a certain functional. We describe the method of seeking solution for these equations, which consists in moving along the gradient to this functional extremum.
Download or read it online for free here:
Download link
(4.6MB, PDF)
Similar books

by Nicolas Raymond - arXiv
'Little Magnetic Book' is devoted to the spectral analysis of the magnetic Laplacian in various geometric situations. In particular the influence of the geometry on the discrete spectrum is analysed in many asymptotic regimes.
(7733 views)

by Matej Pavsic - arXiv
This a book is for those who would like to learn something about special and general relativity beyond the usual textbooks, about quantum field theory, the elegant Fock-Schwinger-Stueckelberg proper time formalism, and much more.
(14832 views)

by Pavel Bleher, Alexander Its - Cambridge University Press
The book covers broad areas such as topologic and combinatorial aspects of random matrix theory; scaling limits, universalities and phase transitions in matrix models; universalities for random polynomials; and applications to integrable systems.
(17868 views)

by Andrei Khrennikov, Gavriel Segre - arXiv
Contents: The hyperbolic algebra as a bidimensional Clifford algebra; Limits and series in the hyperbolic plane; The hyperbolic Euler formula; Analytic functions in the hyperbolic plane; Multivalued functions on the hyperbolic plane; etc.
(12695 views)