**Navier-Stokes Equations: On the Existence and the Search Method for Global Solutions**

by Solomon I. Khmelnik

**Publisher**: MiC 2011**ISBN/ASIN**: 1456468510**ISBN-13**: 9781456468514**Number of pages**: 105

**Description**:

In this book we formulate and prove the variational extremum principle for viscous incompressible and compressible fluid, from which principle follows that the Navier-Stokes equations represent the extremum conditions of a certain functional. We describe the method of seeking solution for these equations, which consists in moving along the gradient to this functional extremum.

Download or read it online for free here:

**Download link**

(4.6MB, PDF)

## Similar books

**Solitons**

by

**David Tong**-

**University of Cambridge**

These lectures cover aspects of solitons with focus on applications to the quantum dynamics of supersymmetric gauge theories and string theory. The lectures consist of four sections, each dealing with a different soliton.

(

**4648**views)

**Mathematics for Physics: A Guided Tour for Graduate Students**

by

**Michael Stone, Paul Goldbart**-

**Cambridge University Press**

This book provides a graduate-level introduction to the mathematics used in research in physics. It focuses on differential and integral equations, Fourier series, calculus of variations, differential geometry, topology and complex variables.

(

**12246**views)

**Clifford Algebra, Geometric Algebra, and Applications**

by

**Douglas Lundholm, Lars Svensson**-

**arXiv**

These are lecture notes for a course on the theory of Clifford algebras. The various applications include vector space and projective geometry, orthogonal maps and spinors, normed division algebras, as well as simplicial complexes and graph theory.

(

**8370**views)

**Differential Equations of Mathematical Physics**

by

**Max Lein**-

**arXiv**

These lecture notes give an overview of how to view and solve differential equations that are common in physics. They cover Hamilton's equations, variations of the Schroedinger equation, the heat equation, the wave equation and Maxwell's equations.

(

**3471**views)