**Theory of Symmetry and Ornament**

by Slavik V. Jablan

**Publisher**: Matematicki Institut 1995**ISBN/ASIN**: 8680593176**ISBN-13**: 9788680593173**Number of pages**: 331

**Description**:

This work represents an attempt at a comparative analysis of the theory of discrete and visually presentable continuous symmetry groups in the plane E2 or in E2\{O}: Symmetry Groups of Rosettes, Friezes and Ornaments (Chapter 2), Similarity Symmetry Groups in E2 (Chapter 3), Conformal Symmetry Groups in E2\{O} (Chapter 4) and ornamental motifs found in ornamental art that satisfy the before mentioned forms of symmetry.

Download or read it online for free here:

**Read online**

(online html)

## Similar books

**Lectures on Discrete and Polyhedral Geometry**

by

**Igor Pak**-

**UCLA**

This book is aimed to be an introduction to some of our favorite parts of the subject, covering some familiar and popular topics as well as some old, forgotten, sometimes obscure, and at times very recent and exciting results.

(

**8850**views)

**Geometry: From Ancient to Modern**

by

**Wong Yan Loi**-

**National University of Singapore**

Contents: Pythagoras' theorem; Pythagorean triples; commensurable and incommensurable quantities; Eudoxus' theory of proportion; method of exhaustion; continued fractions; the surface area of a sphere; the method; regular polyhedra; symmetries; etc.

(

**6136**views)

**The Pythagorean Theorem: Crown Jewel of Mathematics**

by

**John C. Sparks**-

**AuthorHouse**

The book chronologically traces the Pythagorean theorem from the beginning, through 4000 years of Pythagorean proofs. The text presents some classic puzzles, amusements, and applications. An epilogue summarizes the importance of the theorem.

(

**12712**views)

**Euclid's Elements of Geometry**

by

**J.L. Heiberg, R. Fitzpatrick**

Euclid's Elements is the most famous mathematical work of classical antiquity, and also has the distinction of being the oldest continuously used mathematical textbook. The main subjects of the work are geometry, proportion, and number theory.

(

**6515**views)