Algebraic geometry and projective differential geometry

Algebraic geometry and projective differential geometry
by Joseph M. Landsberg

Publisher: arXiv 1998
Number of pages: 70

The author discusses: Homogeneous varieties, Topology and consequences Projective differential invariants, Varieties with degenerate Gauss images, When can a uniruled variety be smooth?, Dual varieties, Linear systems of bounded and constant rank, Secant and tangential varieties, Systems of quadrics with tangential defects, Recognizing uniruled varieties, Recognizing intersections of quadrics, Recognizing homogeneous spaces, Complete intersections.

Home page url

Download or read it online here:
Download link
(630KB, PDF)

Similar books

Introduction to Evolution Equations in GeometryIntroduction to Evolution Equations in Geometry
by Bianca Santoro - arXiv
The author aimed at providing a first introduction to the main general ideas on the study of the Ricci flow, as well as guiding the reader through the steps of Kaehler geometry for the understanding of the complex version of the Ricci flow.
Comparison GeometryComparison Geometry
by Karsten Grove, Peter Petersen - Cambridge University Press
This volume is an up-to-date panorama of Comparison Geometry, featuring surveys and new research. Surveys present classical and recent results, and often include complete proofs, in some cases involving a new and unified approach.
A Geometric Approach to Differential FormsA Geometric Approach to Differential Forms
by David Bachman - arXiv
This is a textbook on differential forms. The primary target audience is sophomore level undergraduates enrolled in a course in vector calculus. Later chapters will be of interest to advanced undergraduate and beginning graduate students.
The Convenient Setting of Global AnalysisThe Convenient Setting of Global Analysis
by Andreas Kriegl, Peter W. Michor - American Mathematical Society
This book lays the foundations of differential calculus in infinite dimensions and discusses those applications in infinite dimensional differential geometry and global analysis not involving Sobolev completions and fixed point theory.