Logo

Algebraic geometry and projective differential geometry

Algebraic geometry and projective differential geometry
by

Publisher: arXiv
Number of pages: 70

Description:
The author discusses: Homogeneous varieties, Topology and consequences Projective differential invariants, Varieties with degenerate Gauss images, When can a uniruled variety be smooth?, Dual varieties, Linear systems of bounded and constant rank, Secant and tangential varieties, Systems of quadrics with tangential defects, Recognizing uniruled varieties, Recognizing intersections of quadrics, Recognizing homogeneous spaces, Complete intersections.

Home page url

Download or read it online for free here:
Download link
(630KB, PDF)

Similar books

Book cover: Cusps of Gauss MappingsCusps of Gauss Mappings
by - Pitman Advanced Pub. Program
Gauss mappings of plane curves, Gauss mappings of surfaces, characterizations of Gaussian cusps, singularities of families of mappings, projections to lines, focal and parallel surfaces, projections to planes, singularities and extrinsic geometry.
(14391 views)
Book cover: Geometric Wave EquationsGeometric Wave Equations
by - arXiv
We discuss the solution theory of geometric wave equations as they arise in Lorentzian geometry: for a normally hyperbolic differential operator the existence and uniqueness properties of Green functions and Green operators is discussed.
(9501 views)
Book cover: Orthonormal Basis in Minkowski SpaceOrthonormal Basis in Minkowski Space
by - arXiv
In this paper, we considered the definition of orthonormal basis in Minkowski space, the structure of metric tensor relative to orthonormal basis, procedure of orthogonalization. Contents: Preface; Minkowski Space; Examples of Minkowski Space.
(9081 views)
Book cover: Principles of Differential GeometryPrinciples of Differential Geometry
by - viXra
A collection of notes about differential geometry prepared as part of tutorials about topics and applications related to tensor calculus. They can be used as a reference for a first course on the subject or as part of a course on tensor calculus.
(5866 views)