**Algebraic geometry and projective differential geometry**

by Joseph M. Landsberg

**Publisher**: arXiv 1998**Number of pages**: 70

**Description**:

The author discusses: Homogeneous varieties, Topology and consequences Projective differential invariants, Varieties with degenerate Gauss images, When can a uniruled variety be smooth?, Dual varieties, Linear systems of bounded and constant rank, Secant and tangential varieties, Systems of quadrics with tangential defects, Recognizing uniruled varieties, Recognizing intersections of quadrics, Recognizing homogeneous spaces, Complete intersections.

Download or read it online for free here:

**Download link**

(630KB, PDF)

## Similar books

**Cusps of Gauss Mappings**

by

**Thomas Banchoff, Terence Gaffney, Clint McCrory**-

**Pitman Advanced Pub. Program**

Gauss mappings of plane curves, Gauss mappings of surfaces, characterizations of Gaussian cusps, singularities of families of mappings, projections to lines, focal and parallel surfaces, projections to planes, singularities and extrinsic geometry.

(

**14391**views)

**Geometric Wave Equations**

by

**Stefan Waldmann**-

**arXiv**

We discuss the solution theory of geometric wave equations as they arise in Lorentzian geometry: for a normally hyperbolic differential operator the existence and uniqueness properties of Green functions and Green operators is discussed.

(

**9501**views)

**Orthonormal Basis in Minkowski Space**

by

**Aleks Kleyn, Alexandre Laugier**-

**arXiv**

In this paper, we considered the definition of orthonormal basis in Minkowski space, the structure of metric tensor relative to orthonormal basis, procedure of orthogonalization. Contents: Preface; Minkowski Space; Examples of Minkowski Space.

(

**9081**views)

**Principles of Differential Geometry**

by

**Taha Sochi**-

**viXra**

A collection of notes about differential geometry prepared as part of tutorials about topics and applications related to tensor calculus. They can be used as a reference for a first course on the subject or as part of a course on tensor calculus.

(

**5866**views)