**Algebraic geometry and projective differential geometry**

by Joseph M. Landsberg

**Publisher**: arXiv 1998**Number of pages**: 70

**Description**:

The author discusses: Homogeneous varieties, Topology and consequences Projective differential invariants, Varieties with degenerate Gauss images, When can a uniruled variety be smooth?, Dual varieties, Linear systems of bounded and constant rank, Secant and tangential varieties, Systems of quadrics with tangential defects, Recognizing uniruled varieties, Recognizing intersections of quadrics, Recognizing homogeneous spaces, Complete intersections.

Download or read it online for free here:

**Download link**

(630KB, PDF)

## Similar books

**Introduction to Homological Geometry**

by

**Martin A. Guest**-

**arXiv**

This is an introduction to some of the analytic aspects of quantum cohomology. The small quantum cohomology algebra, regarded as an example of a Frobenius manifold, is described without going into the technicalities of a rigorous definition.

(

**9890**views)

**Lectures on Fibre Bundles and Differential Geometry**

by

**J.L. Koszul**-

**Tata Institute of Fundamental Research**

From the table of contents: Differential Calculus; Differentiable Bundles; Connections on Principal Bundles; Holonomy Groups; Vector Bundles and Derivation Laws; Holomorphic Connections (Complex vector bundles, Almost complex manifolds, etc.).

(

**10370**views)

**Projective and Polar Spaces**

by

**Peter J. Cameron**-

**Queen Mary College**

The author is concerned with the geometry of incidence of points and lines, over an arbitrary field, and unencumbered by metrics or continuity (or even betweenness). The treatment of these themes blends the descriptive with the axiomatic.

(

**11992**views)

**An Introduction to Gaussian Geometry**

by

**Sigmundur Gudmundsson**-

**Lund University**

These notes introduce the beautiful theory of Gaussian geometry i.e. the theory of curves and surfaces in three dimensional Euclidean space. The text is written for students with a good understanding of linear algebra and real analysis.

(

**11126**views)