Logo

Notes on the Atiyah-Singer Index Theorem

Small book cover: Notes on the Atiyah-Singer Index Theorem

Notes on the Atiyah-Singer Index Theorem
by

Publisher: University of Notre Dame
Number of pages: 135

Description:
This is arguably one of the deepest and most beautiful results in modern geometry, and it is surely a must know for any geometer / topologist. It has to do with elliptic partial differential operators on a compact manifold.

Home page url

Download or read it online for free here:
Download link
(860KB, PDF)

Similar books

Book cover: Noncompact Harmonic ManifoldsNoncompact Harmonic Manifolds
by - arXiv
We provide a survey on recent results on noncompact simply connected harmonic manifolds, and we also prove many new results, both for general noncompact harmonic manifolds and for noncompact harmonic manifolds with purely exponential volume growth.
(3104 views)
Book cover: Exterior Differential Systems and Euler-Lagrange Partial Differential EquationsExterior Differential Systems and Euler-Lagrange Partial Differential Equations
by - University Of Chicago Press
The authors present the results of their development of a theory of the geometry of differential equations, focusing especially on Lagrangians and Poincare-Cartan forms. They also cover certain aspects of the theory of exterior differential systems.
(11455 views)
Book cover: Tight and Taut SubmanifoldsTight and Taut Submanifolds
by - Cambridge University Press
Tight and taut submanifolds form an important class of manifolds with special curvature properties, one that has been studied intensively by differential geometers since the 1950's. This book contains six articles by leading experts in the field.
(6539 views)
Book cover: Global Theory Of Minimal SurfacesGlobal Theory Of Minimal Surfaces
by - American Mathematical Society
The wide variety of topics covered make this volume suitable for graduate students and researchers interested in differential geometry. The subjects covered include minimal and constant-mean-curvature submanifolds, Lagrangian geometry, and more.
(6229 views)