**Real Variables: With Basic Metric Space Topology**

by Robert B. Ash

**Publisher**: Institute of Electrical & Electronics Engineering 2007**ISBN/ASIN**: 0486472205**Number of pages**: 213

**Description**:

This is a text for a first course in real variables for students of engineering, physics, and economics, who need to know real analysis in order to cope with the professional literature in their fields. The book tends to avoid standard mathematical writing, with its emphasis on formalism, but a certain amount of abstraction is unavoidable for a coherent presentation.

Download or read it online for free here:

**Download link**

(79MB, PDF)

## Similar books

**Topology Without Tears**

by

**Sidney A. Morris**

It provides a thorough grounding in general topology: introduction, topological spaces, the Euclidian topology, limit points, homeomorphisms, continuous mappings, metric spaces, compactness, finite products, countable products, Tychonoff's theorem.

(

**13475**views)

**Algebraic General Topology**

by

**Victor Porton**-

**Mathematics21.org**

I introduce the concepts of funcoids which generalize proximity spaces and reloids which generalize uniform spaces. Funcoid is generalized concept of proximity, the concept of reloid is cleared from superfluous details concept of uniformity.

(

**3549**views)

**Notes on Introductory Point-Set Topology**

by

**Allen Hatcher**-

**Cornell University**

These are lecture notes from the first part of an undergraduate course in 2005, covering just the most basic things. From the table of contents: Basic Point-Set Topology; Connectedness; Compactness; Quotient Spaces; Exercises.

(

**4447**views)

**Homeomorphisms in Analysis**

by

**Casper Goffman, at al.**-

**American Mathematical Society**

This book features the interplay of two main branches of mathematics: topology and real analysis. The text covers Lebesgue measurability, Baire classes of functions, differentiability, the Blumberg theorem, various theorems on Fourier series, etc.

(

**11011**views)