Logo

Real Variables: With Basic Metric Space Topology

Large book cover: Real Variables: With Basic Metric Space Topology

Real Variables: With Basic Metric Space Topology
by

Publisher: Institute of Electrical & Electronics Engineering
ISBN/ASIN: 0486472205
Number of pages: 213

Description:
This is a text for a first course in real variables for students of engineering, physics, and economics, who need to know real analysis in order to cope with the professional literature in their fields. The book tends to avoid standard mathematical writing, with its emphasis on formalism, but a certain amount of abstraction is unavoidable for a coherent presentation.

Home page url

Download or read it online for free here:
Download link
(79MB, PDF)

Similar books

Book cover: General TopologyGeneral Topology
by - Université Paris VI
The aim of these lecture notes is to provide a short and self-contained presentation of the main concepts of general topology. Table of contents: Topological spaces; Metric spaces; Compact spaces; Banach spaces; Connectness and homotopy.
(5105 views)
Book cover: Quick Tour of the Topology of RQuick Tour of the Topology of R
by - University of Illinois at Chicago
These notes are a supplement for the 'standard undergraduate course' in Analysis. The aim is to present a more general perspective on the incipient ideas of topology encountered when exploring the rigorous theorem-proof approach to Calculus.
(5234 views)
Book cover: TopologyTopology
by - Trinity College, Dublin
The lecture notes for course 212 (Topology), taught at Trinity College, Dublin. Topics covered: Limits and Continuity, Open and Closed Sets, Metric Spaces, Topological Spaces, Normed Vector Spaces and Functional Analysis, Topology in the Plane.
(6995 views)
Book cover: Elementary TopologyElementary Topology
by - American Mathematical Society
This textbook on elementary topology contains a detailed introduction to general topology and an introduction to algebraic topology via its most classical and elementary segment centered at the notions of fundamental group and covering space.
(11446 views)