Logo

Elementary Topology by O. Ya. Viro, O. A. Ivanov, N. Yu. Netsvetaev, V. M. Kharlamov

Large book cover: Elementary Topology

Elementary Topology
by

Publisher: American Mathematical Society
ISBN/ASIN: 0821845063
ISBN-13: 9780821845066
Number of pages: 400

Description:
This textbook on elementary topology contains a detailed introduction to general topology and an introduction to algebraic topology via its most classical and elementary segment centered at the notions of fundamental group and covering space. With almost no prerequisites (except real numbers), the book can serve as a text for a course on general and beginning algebraic topology.

Home page url

Download or read it online for free here:
Download link
(1.8MB, PDF)

Similar books

Book cover: Lectures on Introduction to Algebraic TopologyLectures on Introduction to Algebraic Topology
by - Tata Institute of Fundamental Research
These notes were intended as a first introduction to algebraic Topology. Contents: Definition and general properties of the fundamental group; Free products of groups and their quotients; On calculation of fundamental groups; and more.
(9610 views)
Book cover: Lecture Notes on Motivic CohomologyLecture Notes on Motivic Cohomology
by - AMS
This book provides an account of the triangulated theory of motives. Its purpose is to introduce Motivic Cohomology, to develop its main properties, and finally to relate it to other known invariants of algebraic varieties and rings.
(9363 views)
Book cover: Topology IllustratedTopology Illustrated
by - Intelligent Perception
The text follows the content of a fairly typical, two-semester, first course in topology. Some of the topics are: the shape of the universe, configuration spaces, digital image analysis, data analysis, social choice, and, of course, calculus.
(11989 views)
Book cover: Algebraic TopologyAlgebraic Topology
by - Cambridge University Press
Introductory text suitable for use in a course or for self-study, it covers fundamental group and covering spaces, homology and cohomology, higher homotopy groups, and homotopy theory generally. The geometric aspects of the subject are emphasized.
(37944 views)