**Algebraic and Geometric Topology**

by Andrew Ranicki, Norman Levitt, Frank Quinn

**Publisher**: Springer 1985**ISBN/ASIN**: 3540152350**ISBN-13**: 9783540152354**Number of pages**: 436

**Description**:

The articles in this volume present original research on a wide range of topics in modern topology. They include important new material on the algebraic K-theory of spaces, the algebraic obstructions to surgery and finiteness, geometric and chain complexes, characteristic classes, and transformation groups.

Download or read it online for free here:

**Download link**

(DJVU, PDF)

## Similar books

**Modern Algebraic Topology**

by

**D. G. Bourgin**-

**Macmillan**

Contents: Preliminary algebraic background; Chain relationships; The absolute homology groups and basic examples; Relative omology modules; Manifolds and fixed cells; Omology exact sequences; Simplicial methods and inverse and direct limits; etc.

(

**3894**views)

**The Adams-Novikov Spectral Sequence and the Homotopy Groups of Spheres**

by

**Paul Goerss**-

**Northwestern University**

Contents: The Adams spectral sequence; Classical calculations; The Adams-Novikov Spectral Sequence; Complex oriented homology theories; The height filtration; The chromatic decomposition; Change of rings; The Morava stabilizer group.

(

**8614**views)

**E 'Infinite' Ring Spaces and E 'Infinite' Ring Spectra**

by

**J. P. May**-

**Springer**

The theme of this book is infinite loop space theory and its multiplicative elaboration. The main goal is a complete analysis of the relationship between the classifying spaces of geometric topology and the infinite loop spaces of algebraic K-theory.

(

**8563**views)

**A Topology Primer**

by

**Klaus Wirthmüller**-

**Technische Universität Kaiserslautern**

The purpose of this text is to make familiar with the basics of topology, to give a concise introduction to homotopy, and to make students familiar with homology. Readers are expected to have knowledge of analysis and linear algebra.

(

**8904**views)