Logo

Algebraic and Geometric Topology

Large book cover: Algebraic and Geometric Topology

Algebraic and Geometric Topology
by

Publisher: Springer
ISBN/ASIN: 3540152350
ISBN-13: 9783540152354
Number of pages: 436

Description:
The articles in this volume present original research on a wide range of topics in modern topology. They include important new material on the algebraic K-theory of spaces, the algebraic obstructions to surgery and finiteness, geometric and chain complexes, characteristic classes, and transformation groups.

Home page url

Download or read it online for free here:
Download link
(DJVU, PDF)

Similar books

Book cover: Modern Algebraic TopologyModern Algebraic Topology
by - Macmillan
Contents: Preliminary algebraic background; Chain relationships; The absolute homology groups and basic examples; Relative omology modules; Manifolds and fixed cells; Omology exact sequences; Simplicial methods and inverse and direct limits; etc.
(3894 views)
Book cover: The Adams-Novikov Spectral Sequence and the Homotopy Groups of SpheresThe Adams-Novikov Spectral Sequence and the Homotopy Groups of Spheres
by - Northwestern University
Contents: The Adams spectral sequence; Classical calculations; The Adams-Novikov Spectral Sequence; Complex oriented homology theories; The height filtration; The chromatic decomposition; Change of rings; The Morava stabilizer group.
(8614 views)
Book cover: E 'Infinite' Ring Spaces and E 'Infinite' Ring SpectraE 'Infinite' Ring Spaces and E 'Infinite' Ring Spectra
by - Springer
The theme of this book is infinite loop space theory and its multiplicative elaboration. The main goal is a complete analysis of the relationship between the classifying spaces of geometric topology and the infinite loop spaces of algebraic K-theory.
(8563 views)
Book cover: A Topology PrimerA Topology Primer
by - Technische Universit├Ąt Kaiserslautern
The purpose of this text is to make familiar with the basics of topology, to give a concise introduction to homotopy, and to make students familiar with homology. Readers are expected to have knowledge of analysis and linear algebra.
(8904 views)