**Topology of Stratified Spaces**

by Greg Friedman, et al.

**Publisher**: Cambridge University Press 2011**ISBN/ASIN**: 052119167X**ISBN-13**: 9780521191678**Number of pages**: 477

**Description**:

This book concerns the study of singular spaces using techniques from a variety of areas of geometry and topology and interactions among them. It contains more than a dozen expository papers on topics ranging from intersection homology, L2 cohomology and differential operators, to the topology of algebraic varieties, signatures and characteristic classes, mixed Hodge theory, and elliptic genera of singular complex and real agebraic varieties.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Algebraic and Geometric Surgery**

by

**Andrew Ranicki**-

**Oxford University Press**

Surgery theory is the standard method for the classification of high-dimensional manifolds, where high means 5 or more. This book aims to be an entry point to surgery theory for a reader who already has some background in topology.

(

**4953**views)

**Prerequisites in Algebraic Topology**

by

**Bjorn Ian Dundas**-

**NTNU**

This is not an introductory textbook in algebraic topology, these notes attempt to give an overview of the parts of algebraic topology, and in particular homotopy theory, which are needed in order to appreciate that side of motivic homotopy theory.

(

**5749**views)

**Homotopy Theories and Model Categories**

by

**W. G. Dwyer, J. Spalinski**-

**University of Notre Dame**

This paper is an introduction to the theory of model categories. The prerequisites needed for understanding this text are some familiarity with CW-complexes, chain complexes, and the basic terminology associated with categories.

(

**4858**views)

**Manifold Theory**

by

**Peter Petersen**-

**UCLA**

These notes are a supplement to a first year graduate course in manifold theory. These are the topics covered: Manifolds (Smooth Manifolds, Projective Space, Matrix Spaces); Basic Tensor Analysis; Basic Cohomology Theory; Characteristic Classes.

(

**4742**views)