**Topology of Stratified Spaces**

by Greg Friedman, et al.

**Publisher**: Cambridge University Press 2011**ISBN/ASIN**: 052119167X**ISBN-13**: 9780521191678**Number of pages**: 477

**Description**:

This book concerns the study of singular spaces using techniques from a variety of areas of geometry and topology and interactions among them. It contains more than a dozen expository papers on topics ranging from intersection homology, L2 cohomology and differential operators, to the topology of algebraic varieties, signatures and characteristic classes, mixed Hodge theory, and elliptic genera of singular complex and real agebraic varieties.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**Algebraic and Geometric Surgery**

by

**Andrew Ranicki**-

**Oxford University Press**

Surgery theory is the standard method for the classification of high-dimensional manifolds, where high means 5 or more. This book aims to be an entry point to surgery theory for a reader who already has some background in topology.

(

**4544**views)

**The Adams-Novikov Spectral Sequence and the Homotopy Groups of Spheres**

by

**Paul Goerss**-

**Northwestern University**

Contents: The Adams spectral sequence; Classical calculations; The Adams-Novikov Spectral Sequence; Complex oriented homology theories; The height filtration; The chromatic decomposition; Change of rings; The Morava stabilizer group.

(

**6963**views)

**Topological Groups: Yesterday, Today, Tomorrow**

by

**Sidney A. Morris (ed.)**-

**MDPI AG**

The aim of this book is to describe significant topics in topological group theory in the early 21st century as well as providing some guidance to the future directions topological group theory might take by including some interesting open questions.

(

**1157**views)

**Algebraic Topology**

by

**Allen Hatcher**-

**Cambridge University Press**

Introductory text suitable for use in a course or for self-study, it covers fundamental group and covering spaces, homology and cohomology, higher homotopy groups, and homotopy theory generally. The geometric aspects of the subject are emphasized.

(

**27956**views)