Logo

Applied Combinatorics by S. E. Payne

Applied Combinatorics
by

Publisher: University of Colorado
Number of pages: 216

Description:
The course at CU-Denver for which these notes were assembled, Math 6409 (Applied Combinatorics), deals more or less entirely with enumerative combinatorics. We have tried to include some truly traditional material and some truly nontrivial material, albeit with a treatment that makes it accessible to the student. We shall derive a variety of techniques for counting, some purely combinatorial, some involving algebra in a moderately sophisticated way.

This document is no more available for free.

Similar books

Book cover: Algebraic and Geometric Methods in Enumerative CombinatoricsAlgebraic and Geometric Methods in Enumerative Combinatorics
by - arXiv
The main goal of this survey is to state clearly and concisely some of the most useful tools in algebraic and geometric enumeration, and to give many examples that quickly and concretely illustrate how to put these tools to use.
(3852 views)
Book cover: Combinatorics Through Guided DiscoveryCombinatorics Through Guided Discovery
by - Dartmouth College
This is an introduction to combinatorial mathematics, also known as combinatorics. The book focuses especially but not exclusively on the part of combinatorics that mathematicians refer to as 'counting'. The book consists almost entirely of problems.
(5806 views)
Book cover: Combinatorial Geometry with Application to Field TheoryCombinatorial Geometry with Application to Field Theory
by - InfoQuest
Topics covered in this book include fundamental of mathematical combinatorics, differential Smarandache n-manifolds, combinatorial or differentiable manifolds and submanifolds, Lie multi-groups, combinatorial principal fiber bundles, etc.
(10800 views)
Book cover: Applied CombinatoricsApplied Combinatorics
by - Georgia Institute of Technology
The purpose of the course is to give students a broad exposure to combinatorial mathematics, using applications to emphasize fundamental concepts and techniques. Our approach to the course is to show students the beauty of combinatorics.
(5005 views)