**Gravitational Waves and Black Holes: an Introduction to General Relativity**

by J.W. van Holten

**Publisher**: arXiv 1997**Number of pages**: 97

**Description**:

In these lectures general relativity is outlined as the classical field theory of gravity, emphasizing physical phenomena rather than mathematical formalism. Dynamical solutions representing traveling waves as well as stationary fields like those of black holes are discussed. Their properties are investigated by studying the geodesic structure of the corresponding space-times, as representing the motion of point-like test particles. The interaction between gravitational, electro-magnetic and scalar fields is also considered.

Download or read it online for free here:

**Download link**

(650KB, PDF)

## Similar books

**Advanced General Relativity**

by

**Sergei Winitzki**-

**Google Sites**

Topics include: Asymptotic structure of spacetime, conformal diagrams, null surfaces, Raychaudhury equation, black holes, the holographic principle, singularity theorems, Einstein-Hilbert action, energy-momentum tensor, Noether's theorem, etc.

(

**5954**views)

**Beyond partial differential equations: A course on linear and quasi-linear abstract hyperbolic evolution equations**

by

**Horst R. Beyer**-

**arXiv**

This course introduces the use of semigroup methods in the solution of linear and nonlinear (quasi-linear) hyperbolic partial differential equations, with particular application to wave equations and Hermitian hyperbolic systems.

(

**7239**views)

**Lecture Notes on General Relativity**

by

**Matthias Blau**-

**Universitaet Bern**

The first half of the book is dedicated to developing the machinery of tensor calculus and Riemannian geometry required to describe physics in a curved space time. We will then turn to various applications of General Relativity.

(

**7158**views)

**Complex Geometry of Nature and General Relativity**

by

**Giampiero Esposito**-

**arXiv**

An attempt is made of giving a self-contained introduction to holomorphic ideas in general relativity, following work over the last thirty years by several authors. The main topics are complex manifolds, spinor and twistor methods, heaven spaces.

(

**10171**views)