Symplectic Geometry by Ana Cannas da Silva

Symplectic Geometry

Publisher: Princeton University
Number of pages: 109

This is an overview of symplectic geometry – the geometry of symplectic manifolds. From a language for classical mechanics in the XVIII century, symplectic geometry has matured since the 1960’s to a rich and central branch of differential geometry and topology. A current survey can thus only aspire to give a partial flavor on this exciting field.

Download or read it online for free here:
Download link
(840KB, PDF)

Similar books

Book cover: Differential TopologyDifferential Topology
by - Johns Hopkins University
This is an elementary text book for the civil engineering students with no prior background in point-set topology. This is a rather terse mathematical text, but provided with an abundant supply of examples and exercises with hints.
Book cover: Lecture Notes on Differentiable ManifoldsLecture Notes on Differentiable Manifolds
by - National University of Singapore
Contents: Tangent Spaces, Vector Fields in Rn and the Inverse Mapping Theorem; Topological and Differentiable Manifolds, Diffeomorphisms, Immersions, Submersions and Submanifolds; Examples of Manifolds; Fibre Bundles and Vector Bundles; etc.
Book cover: Introduction to Differential Topology, de Rham Theory and Morse TheoryIntroduction to Differential Topology, de Rham Theory and Morse Theory
by - Radboud University
Contents: Why Differential Topology? Basics of Differentiable Manifolds; Local structure of smooth maps; Transversality Theory; More General Theory; Differential Forms and de Rham Theory; Tensors and some Riemannian Geometry; Morse Theory; etc.
Book cover: Introduction to Symplectic and Hamiltonian GeometryIntroduction to Symplectic and Hamiltonian Geometry
The text covers foundations of symplectic geometry in a modern language. It describes symplectic manifolds and their transformations, and explains connections to topology and other geometries. It also covers hamiltonian fields and hamiltonian actions.