Logo

Ricci Flow and the Poincare Conjecture

Large book cover: Ricci Flow and the Poincare Conjecture

Ricci Flow and the Poincare Conjecture
by

Publisher: American Mathematical Society
ISBN/ASIN: 0821843281
ISBN-13: 9780821843284
Number of pages: 493

Description:
This book provides full details of a complete proof of the Poincare Conjecture following Grigory Perelman's three preprints. With the large amount of background material that is presented and the detailed versions of the central arguments, this book is suitable for all mathematicians from advanced graduate students to specialists in geometry and topology.

Download or read it online for free here:
Download link
(4.2MB, PDF)

Similar books

Book cover: Lectures on Minimal Surface TheoryLectures on Minimal Surface Theory
by - arXiv
The goal was to give beginning graduate students an introduction to some of the most important basic facts and ideas in minimal surface theory. Prerequisites: the reader should know basic complex analysis and elementary differential geometry.
(3456 views)
Book cover: Exterior Differential Systems and Euler-Lagrange Partial Differential EquationsExterior Differential Systems and Euler-Lagrange Partial Differential Equations
by - University Of Chicago Press
The authors present the results of their development of a theory of the geometry of differential equations, focusing especially on Lagrangians and Poincare-Cartan forms. They also cover certain aspects of the theory of exterior differential systems.
(10722 views)
Book cover: Lectures on Fibre Bundles and Differential GeometryLectures on Fibre Bundles and Differential Geometry
by - Tata Institute of Fundamental Research
From the table of contents: Differential Calculus; Differentiable Bundles; Connections on Principal Bundles; Holonomy Groups; Vector Bundles and Derivation Laws; Holomorphic Connections (Complex vector bundles, Almost complex manifolds, etc.).
(5344 views)
Book cover: Projective and Polar SpacesProjective and Polar Spaces
by - Queen Mary College
The author is concerned with the geometry of incidence of points and lines, over an arbitrary field, and unencumbered by metrics or continuity (or even betweenness). The treatment of these themes blends the descriptive with the axiomatic.
(6959 views)