**Dynamics in One Complex Variable**

by John Milnor

**Publisher**: Princeton University Press 1991**ISBN/ASIN**: 0691124884**ISBN-13**: 9780691124889**Number of pages**: 146

**Description**:

This volume studies the dynamics of iterated holomorphic mappings from a Riemann surface to itself, concentrating on the classical case of rational maps of the Riemann sphere. These lectures are intended to introduce some key ideas in the field, and to form a basis for further study. The reader is assumed to be familiar with the rudiments of complex variable theory and of two-dimensional differential geometry, as well as some basic topics from topology.

Download or read it online for free here:

**Download link**

(1.1MB, PDF)

## Similar books

**Computing of the Complex Variable Functions**

by

**Solomon I. Khmelnik, Inna S. Doubson**-

**MiC**

Hardware algorithms for computing of all elementary complex variable functions are proposed. Contents: A method 'digit-by-digit'; Decomposition; Compositions; Two-step-by-step operations; Taking the logarithm; Potentiation; and more.

(

**7030**views)

**A First Course in Complex Analysis**

by

**M. Beck, G. Marchesi, D. Pixton**-

**San Francisco State University**

These are the lecture notes of a one-semester undergraduate course: complex numbers, differentiation, functions, integration, Cauchy's theorem, harmonic functions, power series, Taylor and Laurent series, isolated singularities, etc.

(

**36353**views)

**Theory of Functions of a Complex Variable**

by

**Heinrich Burkhardt**-

**D. C. Heath**

Contents: Complex numbers and their geometrical representation; Rational functions of a complex variable; Theory of real variables and their functions; Single-valued analytic functions of a complex variable; General theory of functions; etc.

(

**2096**views)

**Elements of the Theory of Functions of a Complex Variable**

by

**G.E. Fisher, I.J. Schwatt**-

**Philadelphia G.E. Fisher**

Contents: Geometric representation of imaginary quantities; Functions of a complex variable in general; Multiform functions; Integrals with complex variables; General properties of functions; Infinite and infinitesimal values of functions; etc.

(

**4955**views)