**Riemann Surfaces, Dynamics and Geometry**

by Curtis McMullen

**Publisher**: Harvard University 2020**Number of pages**: 203

**Description**:

This course will concern the interaction between: hyperbolic geometry in dimensions 2 and 3, the dynamics of iterated rational maps, and the theory of Riemann surfaces and their deformations. Intended for advanced graduate students. Acquaintance with complex analysis, hyperbolic geometry, Lie groups and dynamical systems will be useful.

Download or read it online for free here:

**Download link**

(18MB, PDF)

## Similar books

**Lectures on Differential Geometry**

by

**John Douglas Moore**-

**University of California**

Foundations of Riemannian geometry, including geodesics and curvature, as well as connections in vector bundles, and then go on to discuss the relationships between curvature and topology. Topology will presented in two dual contrasting forms.

(

**10779**views)

**Riemannian Geometry**

by

**Ilkka Holopainen, Tuomas Sahlsten**

Based on the lecture notes on differential geometry. From the contents: Differentiable manifolds, a brief review; Riemannian metrics; Connections; Geodesics; Curvature; Jacobi fields; Curvature and topology; Comparison geometry; The sphere theorem.

(

**8028**views)

**Lectures notes on compact Riemann surfaces**

by

**Bertrand Eynard**-

**arXiv.org**

An introduction to the geometry of compact Riemann surfaces. Contents: Riemann surfaces; Functions and forms on Riemann surfaces; Abel map, Jacobian and Theta function; Riemann-Roch; Moduli spaces; Eigenvector bundles and solutions of Lax equations.

(

**4854**views)

**A Course in Riemannian Geometry**

by

**David R. Wilkins**-

**Trinity College, Dublin**

From the table of contents: Smooth Manifolds; Tangent Spaces; Affine Connections on Smooth Manifolds; Riemannian Manifolds; Geometry of Surfaces in R3; Geodesics in Riemannian Manifolds; Complete Riemannian Manifolds; Jacobi Fields.

(

**11140**views)