Logo

Holonomy Groups in Riemannian Geometry

Small book cover: Holonomy Groups in Riemannian Geometry

Holonomy Groups in Riemannian Geometry
by

Publisher: arXiv
Number of pages: 124

Description:
The holonomy group is one of the fundamental analytical objects that one can define on a Riemannian manfold. These notes provide a first introduction to the main general ideas on the study of the holonomy groups of a Riemannian manifold.

Home page url

Download or read it online for free here:
Download link
(800KB, PDF)

Similar books

Book cover: Riemannian Geometry: Definitions, Pictures, and ResultsRiemannian Geometry: Definitions, Pictures, and Results
by - arXiv
A pedagogical but concise overview of Riemannian geometry is provided in the context of usage in physics. The emphasis is on defining and visualizing concepts and relationships between them, as well as listing common confusions and relevant theorems.
(3378 views)
Book cover: An Introduction to Riemannian Geometry with Applications to Mechanics and RelativityAn Introduction to Riemannian Geometry with Applications to Mechanics and Relativity
by
Contents: Differentiable Manifolds; Differential Forms; Riemannian Manifolds; Curvature; Geometric Mechanics; Relativity (Galileo Spacetime, Special Relativity, The Cartan Connection, General Relativity, The Schwarzschild Solution).
(5512 views)
Book cover: Medians and Means in Riemannian Geometry: Existence, Uniqueness and ComputationMedians and Means in Riemannian Geometry: Existence, Uniqueness and Computation
by - arXiv
This paper is a short summary of our recent work on the medians and means of probability measures in Riemannian manifolds. The existence and uniqueness results of local medians are given. We propose a subgradient algorithm and prove its convergence.
(6897 views)
Book cover: Semi-Riemann Geometry and General RelativitySemi-Riemann Geometry and General Relativity
by
Course notes for an introduction to Riemannian geometry and its principal physical application, Einstein’s theory of general relativity. The background assumed is a good grounding in linear algebra and in advanced calculus.
(14465 views)