Logo

Differential Geometry in Physics

Small book cover: Differential Geometry in Physics

Differential Geometry in Physics
by

Publisher: University of North Carolina at Wilmington
Number of pages: 61

Description:
These notes were developed as a supplement to a course on Differential Geometry at the advanced undergraduate, first year graduate level, which the author has taught for several years. There are many excellent texts in Differential Geometry but very few have an early introduction to differential forms and their applications to Physics. It is the purpose of these notes to bridge some of these gaps and thus help the student get a more profound understanding of the concepts involved.

Home page url

Download or read it online for free here:
Download link
(340KB, PDF)

Similar books

Book cover: Geometry, Topology and PhysicsGeometry, Topology and Physics
by - Technische Universitat Wien
From the table of contents: Topology (Homotopy, Manifolds, Surfaces, Homology, Intersection numbers and the mapping class group); Differentiable manifolds; Riemannian geometry; Vector bundles; Lie algebras and representations; Complex manifolds.
(11954 views)
Book cover: Geometry and Group TheoryGeometry and Group Theory
by - Texas A&M University
Lecture notes on Geometry and Group Theory. In this course, we develop the basic notions of Manifolds and Geometry, with applications in physics, and also we develop the basic notions of the theory of Lie Groups, and their applications in physics.
(13127 views)
Book cover: Lectures on complex geometry, Calabi-Yau manifolds and toric geometryLectures on complex geometry, Calabi-Yau manifolds and toric geometry
by - arXiv
These are introductory lecture notes on complex geometry, Calabi-Yau manifolds and toric geometry. We first define basic concepts of complex and Kahler geometry. We then proceed with an analysis of various definitions of Calabi-Yau manifolds.
(5160 views)
Book cover: Geometry in PhysicsGeometry in Physics
by
Contents: Exterior Calculus (Exterior Algebra, Differential forms in Rn, Metric, Gauge theory); Manifolds (Basic structures, Tangent space); Lie groups (Lie group actions, Lie algebras, Lie algebra actions, From Lie algebras to Lie groups).
(7410 views)