**Noncommutative Geometry**

by Alain Connes

**Publisher**: Academic Press 1994**ISBN/ASIN**: 012185860X**ISBN-13**: 9780121858605**Number of pages**: 654

**Description**:

This English version of the path-breaking French book on this subject gives the definitive treatment of the revolutionary approach to measure theory, geometry, and mathematical physics developed by Alain Connes. Profusely illustrated and invitingly written, this book is ideal for anyone who wants to know what noncommutative geometry is, what it can do, or how it can be used in various areas of mathematics, quantization, and elementary particles and fields.

Download or read it online for free here:

**Download link**

(4.1MB, PDF)

## Similar books

**Introduction to Braided Geometry and q-Minkowski Space**

by

**Shahn Majid**-

**arXiv**

Systematic introduction to the geometry of linear braided spaces. These are versions of Rn in which the coordinates xi have braid-statistics described by an R-matrix. From this starting point we survey the author's braided-approach to q-deformation.

(

**5192**views)

**Lectures on the Geometry of Quantization**

by

**Sean Bates, Alan Weinstein**-

**University of California at Berkeley**

An introduction to the ideas of microlocal analysis and the related symplectic geometry, with an emphasis on the role which these ideas play in formalizing the transition between the mathematics of classical dynamics and that of quantum mechanics.

(

**8371**views)

**Geometry and Topology in Electronic Structure Theory**

by

**Raffaele Resta**-

**University of Trieste**

From the table of contents: Introduction; Early discoveries; Berry-ology (geometry in nonrelativistic quantum mechanics); Manifestations of the Berry phase; Modern theory of polarization; Quantum metric and the theory of the insulating state.

(

**6043**views)

**Differential Geometry in Physics**

by

**Gabriel Lugo**-

**University of North Carolina at Wilmington**

These notes were developed as a supplement to a course on Differential Geometry at the advanced undergraduate level, which the author has taught. This texts has an early introduction to differential forms and their applications to Physics.

(

**13498**views)