**Noncommutative Geometry**

by Alain Connes

**Publisher**: Academic Press 1994**ISBN/ASIN**: 012185860X**ISBN-13**: 9780121858605**Number of pages**: 654

**Description**:

This English version of the path-breaking French book on this subject gives the definitive treatment of the revolutionary approach to measure theory, geometry, and mathematical physics developed by Alain Connes. Profusely illustrated and invitingly written, this book is ideal for anyone who wants to know what noncommutative geometry is, what it can do, or how it can be used in various areas of mathematics, quantization, and elementary particles and fields.

Download or read it online for free here:

**Download link**

(4.1MB, PDF)

## Similar books

**Geometry in Physics**

by

**Alexander Altland**

Contents: Exterior Calculus (Exterior Algebra, Differential forms in Rn, Metric, Gauge theory); Manifolds (Basic structures, Tangent space); Lie groups (Lie group actions, Lie algebras, Lie algebra actions, From Lie algebras to Lie groups).

(

**6589**views)

**Geometry and Topology in Electronic Structure Theory**

by

**Raffaele Resta**-

**University of Trieste**

From the table of contents: Introduction; Early discoveries; Berry-ology (geometry in nonrelativistic quantum mechanics); Manifestations of the Berry phase; Modern theory of polarization; Quantum metric and the theory of the insulating state.

(

**4614**views)

**Noncommutative Geometry, Quantum Fields and Motives**

by

**Alain Connes, Matilde Marcolli**-

**American Mathematical Society**

The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role.

(

**6830**views)

**Geometry, Topology and Physics**

by

**Maximilian Kreuzer**-

**Technische Universitat Wien**

From the table of contents: Topology (Homotopy, Manifolds, Surfaces, Homology, Intersection numbers and the mapping class group); Differentiable manifolds; Riemannian geometry; Vector bundles; Lie algebras and representations; Complex manifolds.

(

**10772**views)