Logo

Projective and Polar Spaces

Small book cover: Projective and Polar Spaces

Projective and Polar Spaces
by

Publisher: Queen Mary College
ISBN/ASIN: 090248012X
ISBN-13: 9780902480124
Number of pages: 147

Description:
The author is concerned with the geometry of incidence of points and lines, over an arbitrary field, and unencumbered by metrics or continuity (or even betweenness). The major themes are the projective and affine spaces, and the polar spaces associated with sesquilinear or quadratic forms on projective spaces. The treatment of these themes blends the descriptive with the axiomatic.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: Notes on the Atiyah-Singer Index TheoremNotes on the Atiyah-Singer Index Theorem
by - University of Notre Dame
This is arguably one of the deepest and most beautiful results in modern geometry, and it is surely a must know for any geometer / topologist. It has to do with elliptic partial differential operators on a compact manifold.
(5107 views)
Book cover: An introductory course in differential geometry and the Atiyah-Singer index theoremAn introductory course in differential geometry and the Atiyah-Singer index theorem
by - Binghamton University
This is a lecture-based class on the Atiyah-Singer index theorem, proved in the 60's by Sir Michael Atiyah and Isadore Singer. Their work on this theorem lead to a joint Abel prize in 2004. Requirements: Knowledge of topology and manifolds.
(6415 views)
Book cover: Lectures on Calabi-Yau and Special Lagrangian GeometryLectures on Calabi-Yau and Special Lagrangian Geometry
by - arXiv
An introduction to Calabi-Yau manifolds and special Lagrangian submanifolds from the differential geometric point of view, followed by recent results on singularities of special Lagrangian submanifolds, and their application to the SYZ Conjecture.
(7291 views)
Book cover: Tight and Taut SubmanifoldsTight and Taut Submanifolds
by - Cambridge University Press
Tight and taut submanifolds form an important class of manifolds with special curvature properties, one that has been studied intensively by differential geometers since the 1950's. This book contains six articles by leading experts in the field.
(6295 views)