**Projective and Polar Spaces**

by Peter J. Cameron

**Publisher**: Queen Mary College 1991**ISBN/ASIN**: 090248012X**ISBN-13**: 9780902480124**Number of pages**: 147

**Description**:

The author is concerned with the geometry of incidence of points and lines, over an arbitrary field, and unencumbered by metrics or continuity (or even betweenness). The major themes are the projective and affine spaces, and the polar spaces associated with sesquilinear or quadratic forms on projective spaces. The treatment of these themes blends the descriptive with the axiomatic.

Download or read it online for free here:

**Download link**

(multiple PDF files)

## Similar books

**An Introduction to Gaussian Geometry**

by

**Sigmundur Gudmundsson**-

**Lund University**

These notes introduce the beautiful theory of Gaussian geometry i.e. the theory of curves and surfaces in three dimensional Euclidean space. The text is written for students with a good understanding of linear algebra and real analysis.

(

**8013**views)

**Geometric Wave Equations**

by

**Stefan Waldmann**-

**arXiv**

We discuss the solution theory of geometric wave equations as they arise in Lorentzian geometry: for a normally hyperbolic differential operator the existence and uniqueness properties of Green functions and Green operators is discussed.

(

**6265**views)

**Notes on the Atiyah-Singer Index Theorem**

by

**Liviu I. Nicolaescu**-

**University of Notre Dame**

This is arguably one of the deepest and most beautiful results in modern geometry, and it is surely a must know for any geometer / topologist. It has to do with elliptic partial differential operators on a compact manifold.

(

**6542**views)

**Triangles, Rotation, a Theorem and the Jackpot**

by

**Dave Auckly**-

**arXiv**

This paper introduced undergraduates to the Atiyah-Singer index theorem. It includes a statement of the theorem, an outline of the easy part of the heat equation proof. It includes counting lattice points and knot concordance as applications.

(

**5608**views)