Logo

Projective and Polar Spaces

Small book cover: Projective and Polar Spaces

Projective and Polar Spaces
by

Publisher: Queen Mary College
ISBN/ASIN: 090248012X
ISBN-13: 9780902480124
Number of pages: 147

Description:
The author is concerned with the geometry of incidence of points and lines, over an arbitrary field, and unencumbered by metrics or continuity (or even betweenness). The major themes are the projective and affine spaces, and the polar spaces associated with sesquilinear or quadratic forms on projective spaces. The treatment of these themes blends the descriptive with the axiomatic.

Home page url

Download or read it online for free here:
Download link
(multiple PDF files)

Similar books

Book cover: An Introduction to Gaussian GeometryAn Introduction to Gaussian Geometry
by - Lund University
These notes introduce the beautiful theory of Gaussian geometry i.e. the theory of curves and surfaces in three dimensional Euclidean space. The text is written for students with a good understanding of linear algebra and real analysis.
(6263 views)
Book cover: A Geometric Approach to Differential FormsA Geometric Approach to Differential Forms
by - arXiv
This is a textbook on differential forms. The primary target audience is sophomore level undergraduates enrolled in a course in vector calculus. Later chapters will be of interest to advanced undergraduate and beginning graduate students.
(8329 views)
Book cover: Global Theory Of Minimal SurfacesGlobal Theory Of Minimal Surfaces
by - American Mathematical Society
The wide variety of topics covered make this volume suitable for graduate students and researchers interested in differential geometry. The subjects covered include minimal and constant-mean-curvature submanifolds, Lagrangian geometry, and more.
(5691 views)
Book cover: Cusps of Gauss MappingsCusps of Gauss Mappings
by - Pitman Advanced Pub. Program
Gauss mappings of plane curves, Gauss mappings of surfaces, characterizations of Gaussian cusps, singularities of families of mappings, projections to lines, focal and parallel surfaces, projections to planes, singularities and extrinsic geometry.
(9852 views)