**Global Theory Of Minimal Surfaces**

by David Hoffman

**Publisher**: American Mathematical Society 2005**ISBN/ASIN**: 0821835874**ISBN-13**: 9780821835876**Number of pages**: 808

**Description**:

The wide variety of topics covered make this volume suitable for graduate students and researchers interested in differential geometry. The subjects covered include minimal and constant-mean-curvature submanifolds, geometric measure theory and the double-bubble conjecture, Lagrangian geometry, numerical simulation of geometric phenomena, applications of mean curvature to general relativity and Riemannian geometry, the isoperimetric problem, the geometry of fully nonlinear elliptic equations and applications to the topology of three-dimensional manifolds.

*This document is no more available for free.*

## Similar books

**Natural Operations in Differential Geometry**

by

**Ivan Kolar, Peter W. Michor, Jan Slovak**-

**Springer**

A comprehensive textbook on all basic structures from the theory of jets. It begins with an introduction to differential geometry. After reduction each problem to a finite order setting, the remaining discussion is based on properties of jet spaces.

(

**10462**views)

**Introduction to Homological Geometry**

by

**Martin A. Guest**-

**arXiv**

This is an introduction to some of the analytic aspects of quantum cohomology. The small quantum cohomology algebra, regarded as an example of a Frobenius manifold, is described without going into the technicalities of a rigorous definition.

(

**4576**views)

**Gauge Theory for Fiber Bundles**

by

**Peter W. Michor**-

**Universitaet Wien**

Gauge theory usually investigates the space of principal connections on a principal fiber bundle (P,p,M,G) and its orbit space under the action of the gauge group (called the moduli space), which is the group of all principal bundle automorphisms...

(

**4123**views)

**Exterior Differential Systems and Euler-Lagrange Partial Differential Equations**

by

**R. Bryant, P. Griffiths, D. Grossman**-

**University Of Chicago Press**

The authors present the results of their development of a theory of the geometry of differential equations, focusing especially on Lagrangians and Poincare-Cartan forms. They also cover certain aspects of the theory of exterior differential systems.

(

**10330**views)