Recurrent Neural Networks
by Xiaolin Hu, P. Balasubramaniam
Publisher: InTech 2008
ISBN-13: 9789537619084
Number of pages: 400
Description:
The concept of neural network originated from neuroscience, and one of its primitive aims is to help us understand the principle of the central nerve system and related behaviors through mathematical modeling. The first part of the book is a collection of three contributions dedicated to this aim.
Download or read it online for free here:
Download link
(39MB, PDF)
Similar books

by Mark Watson - Lulu.com
The book uses the author's libraries and the best of open source software to introduce AI (Artificial Intelligence) technologies like neural networks, genetic algorithms, expert systems, machine learning, and NLP (natural language processing).
(19662 views)

by Ivan F Wilde - King's College London
These notes are based on lectures given in the Mathematics Department at King's College London. An attempt has been made to present a logical (mathematical) account of some of the basic ideas of the 'artificial intelligence' aspects of the subject.
(11895 views)

by David Kriesel - dkriesel.com
Text and illustrations should be memorable and easy to understand to offer as many people as possible access to the field of neural networks. The chapters are individually accessible to readers with little previous knowledge.
(27791 views)

by Rolf Pfeifer, Dana Damian, Rudolf Fuchslin - University of Zurich
Systematic introduction to neural networks, biological foundations; important network classes and learning algorithms; supervised models (perceptrons, adalines, multi-layer perceptrons), support-vector machines, echo-state networks, etc.
(8288 views)