Recurrent Neural Networks
by Xiaolin Hu, P. Balasubramaniam
Publisher: InTech 2008
ISBN-13: 9789537619084
Number of pages: 400
Description:
The concept of neural network originated from neuroscience, and one of its primitive aims is to help us understand the principle of the central nerve system and related behaviors through mathematical modeling. The first part of the book is a collection of three contributions dedicated to this aim.
Download or read it online for free here:
Download link
(39MB, PDF)
Similar books

by Martin T. Hagan, et al.
This book provides a clear and detailed coverage of fundamental neural network architectures and learning rules. In it, the authors emphasize a coherent presentation of the principal neural networks, methods for training them and their applications.
(10568 views)

by Allessandro Treves, Yasser Roudi - SISSA
We review the common themes, the network models and the mathematical formalism underlying our studies about different stages in the evolution of the human brain. These studies discuss the evolution of cortical networks in terms of their computations.
(11827 views)

by Ben Krose, Patrick van der Smagt
This manuscript attempts to provide the reader with an insight in artificial neural networks. The choice of describing robotics and vision as neural network applications coincides with the neural network research interests of the authors.
(14364 views)

by Raul Rojas - Springer
A general theory of artificial neural nets. The book starts with the simple nets, and shows how the models change when more general computing elements and net topologies are introduced. Suitable as a basis for university courses in neurocomputing.
(16790 views)