Welcome to **E-Books Directory**

This page lists freely downloadable books.

# Neural Networks

E-Books for free online viewing and/or download

## e-books in this category

Tweet |

**Deep Learning in Neural Networks: An Overview**

by **Juergen Schmidhuber** - **arXiv** , **2014**

In recent years, deep artificial neural networks (including recurrent ones) have won numerous contests in pattern recognition and machine learning. This historical survey compactly summarises relevant work, much of it from the previous millennium.

(**1808** views)

**Neural Networks and Deep Learning**

by **Michael Nielsen** , **2014**

Neural networks and deep learning currently provide the best solutions to many problems in image recognition, speech recognition, and natural language processing. This book will teach you the core concepts behind neural networks and deep learning.

(**1722** views)

**Neural Networks**

by **Milan Hajek** - **University of KwaZulu-Natal** , **2005**

Contents: Introduction; Learning process; Perceptron; Back-propagation networks; The Hopfield network; Self-organizing feature maps; Temporal processing with neural networks; Radial-basis function networks; Adaline (Adaptive Linear System).

(**1555** views)

**Artificial Neural Networks: Architectures and Applications**

by **Kenji Suzuki (ed.)** - **InTech** , **2013**

Artificial neural networks may be the single most successful technology in the last two decades. The purpose of this book is to provide recent advances in architectures, methodologies, and applications of artificial neural networks.

(**5839** views)

**Artificial Neural Networks**

- **Wikibooks** , **2010**

Neural networks excel in a number of problem areas where conventional von Neumann computer systems have traditionally been slow and inefficient. This book is going to discuss the creation and use of artificial neural networks.

(**6601** views)

**An Introduction to Computational Neuroscience**

by **Todd Troyer** - **University of Texas at San Antonio** , **2005**

These notes have three main objectives: to present the major concepts of computational neuroscience, to present the basic mathematics that underlies these concepts, and to give the reader some idea of common approaches taken by neuroscientists.

(**2759** views)

**An Introduction to Neural Networks**

by **Ben Krose, Patrick van der Smagt** , **1996**

This manuscript attempts to provide the reader with an insight in artificial neural networks. The choice of describing robotics and vision as neural network applications coincides with the neural network research interests of the authors.

(**7057** views)

**Neural Networks**

by **Rolf Pfeifer, Dana Damian, Rudolf Fuchslin** - **University of Zurich** , **2010**

Systematic introduction to neural networks, biological foundations; important network classes and learning algorithms; supervised models (perceptrons, adalines, multi-layer perceptrons), support-vector machines, echo-state networks, etc.

(**6564** views)

**Of the Evolution of the Brain**

by **Allessandro Treves, Yasser Roudi** - **SISSA** , **2010**

We review the common themes, the network models and the mathematical formalism underlying our studies about different stages in the evolution of the human brain. These studies discuss the evolution of cortical networks in terms of their computations.

(**4336** views)

**Artificial Neural Networks: Methodological Advances and Biomedical Applications**

by **Kenji Suzuki** - **InTech** , **2011**

The purpose of this book is to provide recent advances of artificial neural networks in biomedical applications. The target audience includes professors and students in engineering and medical schools, medical doctors, healthcare professionals, etc.

(**6842** views)

**Neural Fuzzy Systems**

by **Robert Fuller** - **Abo Akademi University** , **1995**

This text covers inference mechanisms in fuzzy expert systems, learning rules of feedforward multi-layer supervised neural networks, Kohonen's unsupervised learning algorithm for classification of input patterns, and fuzzy neural hybrid systems.

(**5225** views)

**Thinking About the Brain**

by **William Bialek** - **arXiv** , **2002**

We all are fascinated by the phenomena of intelligent behavior, as generated by our own brains. As physicists we want to understand if there are some general principles that govern the dynamics of the neural circuits that underlie these phenomena.

(**4732** views)

**Recurrent Neural Networks**

by **Xiaolin Hu, P. Balasubramaniam** - **InTech** , **2008**

The concept of neural network originated from neuroscience, and one of its aims is to help us understand the principle of the central nerve system through mathematical modeling. The first part of the book is dedicated to this aim.

(**6141** views)

**Introduction to Neural Networks for Java**

by **Jeff Heaton** - **Heaton Research, Inc.** , **2008**

The book is an introduction to Neural Networks and Artificial Intelligence. Neural network architectures, such as the feedforward, Hopfield, and self-organizing map architectures are discussed. Training techniques are also introduced.

(**13778** views)

**Neural Networks**

by **Ivan F Wilde** - **King's College London** , **2009**

These notes are based on lectures given in the Mathematics Department at King's College London. An attempt has been made to present a logical (mathematical) account of some of the basic ideas of the 'artificial intelligence' aspects of the subject.

(**7446** views)

**Encyclopedia of Computational Neuroscience**

by **Eugene M. Izhikevich, at al.** - **Scholarpedia** , **2009**

Neuroscience, Electrophysiology, Neuron, Network Dynamics, Brain Models, Synapse, Memory, Conditioning, Consciousness, Vision, Olfaction, Neuroimaging, Dynamical Systems, Oscillators, Synchronization, Pattern Formation, Chaos, Bifurcations, etc.

(**7633** views)

**From Complexity to Creativity**

by **Ben Goertzel** - **Plenum Press** , **1996**

This text applies the concepts of complexity science to provide an explanation of all aspects of human creativity. The book describes the model that integrates ideas from computer science, mathematics, neurobiology, philosophy, and psychology.

(**10488** views)

**A Brief Introduction to Neural Networks**

by **David Kriesel** - **dkriesel.com** , **2011**

Text and illustrations should be memorable and easy to understand to offer as many people as possible access to the field of neural networks. The chapters are individually accessible to readers with little previous knowledge.

(**21966** views)

**Neural Networks: A Systematic Introduction**

by **Raul Rojas** - **Springer** , **1996**

A general theory of artificial neural nets. The book starts with the simple nets, and shows how the models change when more general computing elements and net topologies are introduced. Suitable as a basis for university courses in neurocomputing.

(**8571** views)

**Machine Learning, Neural and Statistical Classification**

by **D. Michie, D. J. Spiegelhalter** - **Ellis Horwood** , **1994**

The book provides a review of different approaches to classification, compares their performance on challenging data-sets, and draws conclusions on their applicability to realistic industrial problems. A wide variety of approaches has been taken.

(**11584** views)

**Practical Artificial Intelligence Programming in Java**

by **Mark Watson** - **Lulu.com** , **2008**

The book uses the author's libraries and the best of open source software to introduce AI (Artificial Intelligence) technologies like neural networks, genetic algorithms, expert systems, machine learning, and NLP (natural language processing).

(**18070** views)

Tweet |